Section 3.5 Implicit Differentiation

Example: \(x^3 + y^3 = 6xy \). Find \(\frac{dy}{dx} \) and write the equation of the tangent line at \((3,3)\).

Solution: \(3x^2 + 3y^2 \cdot \frac{dy}{dx} = 6y + 6x \cdot \frac{dy}{dx} \)

\[
\Rightarrow \quad \frac{dy}{dx}(3y^2 - 6x) = 6y - 3x^2
\]

\[
\Rightarrow \quad \frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{2y - x^2}{y^2 - 2x}
\]

Slope of the tangent line at \((3,3)\): \(\frac{dy}{dx}(3,3) = \frac{2(3) - 3^2}{3^2 - 2(3)} = \frac{6 - 9}{9 - 6} = \frac{-3}{3} = -1 \)

Equation: \((y - 3) = -1(x - 3)\)

\(\Rightarrow \quad y - 3 = -x + 3 \)

\(\Rightarrow \quad y + x = 6 \)
Derivatives of Inverse Trigonometric Functions

\[y = \sin^{-1}x \text{ means } \sin y = x \quad -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \]

\[\sin y = x \]
\[\frac{d}{dx}(\sin y) = \frac{d}{dx}(x) \]
\[\cos y \cdot \frac{dy}{dx} = 1 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{\cos y} \]
\[\cos y \text{ is positive} \]
\[\Rightarrow \quad \frac{dy}{dx} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}} \]

\[(\sin^{-1}x)^1 = \frac{1}{\sqrt{1 - x^2}} \]

\[y = \tan^{-1}x \quad \Leftrightarrow \quad \tan y = x \quad \frac{-\pi}{2} < y < \frac{\pi}{2} \]
\[\tan y = x \]
\[\Rightarrow \quad \frac{d}{dx}(\tan y) = \frac{d}{dx}(x) \]
\[\sec^2 y \cdot \frac{dy}{dx} = 1 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} \]
\[\Rightarrow \quad \frac{dy}{dx} = \frac{1}{1 + x^2} \]
\[(\tan^{-1}x)' = \frac{1}{1+x^2} \]

Derivatives of inverse trigonometric functions.

- \[\frac{d}{dx} (\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \]
- \[\frac{d}{dx} (\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}} \]
- \[\frac{d}{dx} (\tan^{-1}x) = \frac{1}{1+x^2} \]
- \[\frac{d}{dx} (\cot^{-1}x) = -\frac{1}{1+x^2} \]
- \[\frac{d}{dx} (\sec^{-1}x) = \frac{1}{x \sqrt{x^2-1}} \]
- \[\frac{d}{dx} (\csc^{-1}x) = -\frac{1}{x \sqrt{x^2-1}} \]

3.6 **Derivatives of Logarithmic Functions**

We will show that \[\frac{d}{dx} (\log_a x) = \frac{1}{x \cdot \ln a} \]

Proof

\[\log_a x = y \iff a^y = x \]

\[\frac{d}{dx} (a^y) = \frac{d}{dx} (x) \]

\[a^y \cdot \ln a \cdot \frac{dy}{dx} = 1 \]

\[\Rightarrow \frac{dy}{dx} = \frac{1}{a^y \cdot \ln a} = \frac{1}{x \cdot \ln a} \]
Put \(q = e \)

\[\Rightarrow \frac{d}{dx} (\ln x) = \frac{1}{x \cdot \ln e} \]

(2)

\[\Rightarrow \frac{d}{dx} (\ln x) = \frac{1}{x} \]

Example

\[y = \ln (x^5 + 3) \]

\[f(x) = x^5 + 3 \quad \Rightarrow \text{inner function} \quad f'(x) = 5x^4 \]

\[g(x) = \ln x \quad \Rightarrow \text{outer function} \quad g'(x) = \frac{1}{x} \]

\[y' = \frac{1}{x^5 + 3} \cdot 5x^4 \]

Note: We can combine Formula 2 and the Chain Rule

(3)

\[\frac{d}{dx} (\ln (f(x))) = \frac{1}{f(x)} \cdot f'(x) \]

Example

\[y = \ln (\tan x) \quad y' = ? \]

Solution

By applying formula 3

\[y' = \frac{1}{\tan x} (\tan x)' = \frac{1}{\tan x} \cdot \sec^2 x \]
Example: \[y = \ln \left(\frac{x^2 + 1}{3x + 5} \right) \Rightarrow y' = ? \]

Solution: \[y = \ln (x^2 + 1) - \ln (3x + 5) \]
\[y' = \frac{1}{x^2 + 1} \cdot 2x - \frac{1}{3x + 5} \cdot 3 \]

Example: Find \(f'(x) \) if \(f(x) = \ln |x| \)

Solution: \[f(x) = \begin{cases} \ln x & \text{if } x > 0 \\ \ln(-x) & \text{if } x < 0 \end{cases} \]
\[\Rightarrow f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0 \\ -\frac{1}{-x} = \frac{1}{x} & \text{if } x < 0 \end{cases} \]
\[\Rightarrow f'(x) = \frac{1}{x} \quad \text{for all } x \neq 0 \]

\[\Rightarrow \text{It is worth remembering:} \]

\[\frac{d}{dx} \ln |x| = \frac{1}{x} \]
Section 3.5 Implicit Differentiation

Example \(x^3 + y^3 = 6xy \). Find \(\frac{dy}{dx} \) and write the equation of the tangent line at (3,3).

Solution \(3x^2 + 3y^2 \frac{dy}{dx} = 6y + 6x \). \(\frac{dy}{dx} \)

\[
\frac{dy}{dx} (3y^2 - 6x) = 6y - 3x^2
\]

\[
\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x} = \frac{2y - x^2}{y^2 - 2x}
\]

Slope of the tangent line at (3,3)

\[
\frac{dy}{dx} (3,3) = \frac{2 \cdot 3 - 3^2}{3^2 - 2 \cdot 3} = \frac{6 - 9}{9 - 6} = -\frac{3}{1}
\]
Logarithmic Differentiation:

The calculation of derivatives of complicated functions can often be simplified by taking logarithms.

Example: \(y = x^{(\sqrt{x})} \) \(\Rightarrow \) \(y' = \) ?

\[
\ln y = \ln (x^{\sqrt{x}})
\]

\[
\Rightarrow \ln y = \sqrt{x} \cdot \ln x
\]

\[
\Rightarrow (\ln y)' = \left(\frac{1}{2\sqrt{x}} \cdot \ln x + \sqrt{x} \cdot \frac{1}{x}\right)
\]

\[
\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \cdot \ln x + \sqrt{x} \cdot \frac{1}{x}
\]

\[
\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \frac{\ln x}{2\sqrt{x}} + \frac{1}{x}
\]

\[
\Rightarrow \frac{dy}{dx} = y \left(\frac{\ln x + 2}{2\sqrt{x}} \right)
\]

\[
\Rightarrow \frac{dy}{dx} = x^{\sqrt{x}} \left(\frac{\ln x + 2}{2\sqrt{x}} \right)
\]
Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation \(y = f(x) \) and use the Laws of Logarithms to simplify
2. Differentiate implicitly with respect to \(x \)
3. Solve the resulting equation for \(y' \).

\[
\begin{align*}
y = a^x & \quad \Rightarrow \quad y' = ? \\
y = a^x & \Rightarrow \ln y = \ln a^x \\
& \Rightarrow \quad \ln y = x \cdot \ln a
\end{align*}
\]

\[(a^x)' = a^x \cdot \ln a \]
General Rule (Use previous example and combine it with Chain Rule)

\[
\frac{d}{dx} (a^{f(x)}) = a^{f(x)} \ln a \cdot f'(x)
\]

Example

\[y = a^{x^2 + 6x} \Rightarrow y' = ?\]

\[y' = a^{x^2 + 6x} \ln a \cdot (2x + 6)\]

The Number e as a Limit

\[f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}\]

\[f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\ln (1+h) - \ln 1}{h}\]

\[= \lim_{h \to 0} \frac{\ln (1+h)}{h}\]

\[= \lim_{h \to 0} \frac{1}{h} \cdot \ln (1+h)\]

\[= \lim_{h \to 0} \frac{\ln (1+h)}{1/h}\]
\[f'(1) = 1 \]

\[\Rightarrow \lim_{{x \to 0}} \ln (1+x)^{\frac{1}{x}} = 1 \]

We know that \(e^x \) is continuous on everywhere.

\[e = e^1 = e^{\lim_{{x \to 0}} \ln (1+x)^{\frac{1}{x}}} = \lim_{{x \to 0}} e^{\ln (1+x)^{\frac{1}{x}}} = \lim_{{x \to 0}} (1+x)^{\frac{1}{x}} \]

\[\Rightarrow \boxed{e = \lim_{{x \to 0}} (1+x)^{\frac{1}{x}}} \]

Put \(n = \frac{1}{x} \), as \(x \to 0^+ \), \(n \to \infty \)

So an alternative version of \(\boxed{15} \)

\[\boxed{6} \]

\[e = \lim_{{n \to \infty}} \left(1 + \frac{1}{n} \right)^n \]
Ex: \(y = (\cos x)^x \Rightarrow y' = ? \)

Solution:
\[
\begin{align*}
\ln y &= x \ln(\cos x) \\
\frac{1}{y} \frac{dy}{dx} &= x \frac{\ln(\cos x)}{\cos x} - \sin x \\
\frac{1}{y} \frac{dy}{dx} &= \ln(\cos x) - x \frac{\sin x}{\cos x} \\
\frac{dy}{dx} &= y \left(\ln(\cos x) - x \tan x \right) \\
y' &= (\cos x)^x \left(\ln(\cos x) - x \tan x \right)
\end{align*}
\]

Ex: \(y = \ln \left(x + \sqrt{x^2 + 3} \right) \Rightarrow y' = ? \)

Solution:
\[
\begin{align*}
y' &= \frac{1}{x + \sqrt{x^2 + 3}} \left(x + \sqrt{x^2 + 3} \right)' \\
y' &= \frac{1}{x + \sqrt{x^2 + 3}} \left(1 + \frac{1}{2 \sqrt{x^2 + 3}} \cdot 2x \right)
\end{align*}
\]
3.7 Rates of Change in the Natural and Social Sciences

\[
\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \rightarrow \text{average rate of change of } y \text{ with respect to } x \text{ over the interval } [x_1, x_2]
\]

We can interpret it as "slope of the secant line" PQ

$P = (x_1, f(x_1))$

$Q = (x_2, f(x_2))$

Its limit as $\Delta x \to 0$ is derivative $f'(x_1)$, which can therefore be interpreted as the \textbf{instantaneous} rate of change of y with respect to x \textbf{OR} slope of the tangent line at $P(x_1, f(x_1))$.

\[\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}\]

We now look at some interpretations in the natural and social sciences.
If \(s=f(t) \) is the position function,

\[
\frac{\Delta s}{\Delta t} \rightarrow \text{average velocity over a time period } \Delta t
\]

\[V = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} \quad \text{"instantaneous velocity"} \]

\[V'(t) = s'(t) = a(t) \quad \text{"acceleration"} \]

Ex: The position of a particle is given by the equation

\[s = f(t) = t^3 - 6t^2 + 9, t \]

where \(t \) is measured in seconds and \(s \) in meters.

(a) Find velocity and acceleration function.

(b) When is the particle at rest?

(c) When is the particle moving forward?

So:

\[V(t) = 3t^2 - 12t + 9 \]

\[\text{Acceleration } (t) = 6t - 12 \]

(b) The particle is at rest when \(V(t) = 0 \)

\[3t^2 - 12t + 9 = 3(t^2 - 4t + 3) = 3(t - 1)(t - 3) = 0 \]

\[t = 1 \quad \text{&} \quad t = 3 \]
(c) The particle moves in the positive direction when
\[v(t) > 0, \text{ that is } \]
\[3t^2 - 12t + 9 > 0 \]
\[3(t-1)(t-3) > 0 \]

Thus the particle moves in positive direction when \(t < 1 \) and \(t > 3 \).

It moves in the negative direction when \(1 < t < 3 \).

\[\text{Biology} \]

Let \(n = f(t) \) be the number of individuals in an animal or plant population at time \(t \).

Change in population size between \(t = t_1 \) and \(t = t_2 \)

\[\Delta n = f(t_2) - f(t_1) \]

Average rate of growth = \[\frac{\Delta n}{\Delta t} = \frac{f(t_2) - f(t_1)}{t_2 - t_1} \]
Instantaneous rate of growth: \[\lim_{\Delta t \to 0} \frac{\Delta n}{\Delta t} = \frac{dn}{dt} \]

Growth rate: \[\lim_{\Delta t \to 0} \frac{\Delta n}{\Delta t} = \frac{dn}{dt} \]

Example: The population function for E. coli bacteria is \(n = n_0 \cdot 2^t \) (no is starting population).

Rate of growth of the bacteria is \(\frac{dn}{dt} = \frac{dn}{dt}(n_0 \cdot 2^t) \)

\[= n_0 \cdot \frac{d}{dt}(2^t) \]

\[= n_0 \cdot 2^t \cdot \ln 2 \]

\(\Rightarrow \) Growth rate is \(n_0 \cdot 2^t \cdot \ln 2 \)

\(\Rightarrow \) After 4 hours, the bacteria population is growing at a rate of about \(11.09 \) bacteria per hour.

(assuming \(n_0 = 100 \))
Economics

Suppose \(C(x) \) is the total cost that a company incurs in producing \(x \) units of a certain commodity.

\(C \) is called "cost function".

If the number of items produced is increased from \(x_1 \) to \(x_2 \), then the additional cost \(\Delta C = C(x_2) - C(x_1) \).

Average rate of change of the cost:

\[
\frac{\Delta C}{\Delta x} = \frac{C(x_2) - C(x_1)}{x_2 - x_1} = \frac{C(x_1 + \Delta x) - C(x_1)}{\Delta x}
\]

Take \(\Delta x \to 0 \)

Instantaneous rate of change of the cost with respect to the number of items produced, is called the "marginal cost" by economists.

\[
\text{Marginal cost} = \lim_{\Delta x \to 0} \frac{\Delta C}{\Delta x} = \frac{dC}{dx}
\]
Suppose a company has estimated the cost (in dollars) of producing \(x \) items is

\[
C(x) = 10.000 + 5x + 0.01x^2
\]

Marginal Cost Function

\[
C'(x) = 5 + 0.022x
\]

Marginal cost when the production level is 500 items

\[
\Rightarrow C'(500) = $15 / \text{item}
\]

This gives the rate at which costs are increasing with respect to the production level when \(x = 500 \) and predicts the cost of 501st item.

Notice that \[
C'(500) \approx C(501) - C(500)
\]