
Technical Report:
Reset-Based Recovery for Real-Time

Cyber-Physical Systems with
Temporal Safety Constraints

Fardin Abdi Taghi Abad
1, Renato Mancuso

1

Stanley Bak
2, Or Dantsker

3, Marco Caccamo
1

1 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
2 United States Air Force Research Lab, Rome, USA

3 Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, USA

Abstract

In traditional computing systems, software problems are often resolved by platform restarts. This
approach, however, cannot be naïvely used in cyber-physical systems (CPS). In fact, in this class of
systems, ensuring safety strictly depends on the ability to respect hard real-time constraints. Several
adaptations of the Simplex architecture have been proposed to guarantee safety in spite of misbehaving
software components. However, the problem of performing recovery into a fully operational state has not
been extensively addressed.

In this work, we discuss how resets can be used in CPS as an effective strategy to recover from a variety
of software faults. Our work extends the Simplex architecture in a number of directions. First, we provide
sufficient conditions under which safety is guaranteed is spite of fault-induced resets. Second, we introduce
a novel technique to express not only state-dependent safety constraints, as typically done in Simplex, but
also time-dependent safety properties. Finally, through a proof-of-concept minimal implementation on a
small R/C helicopter and simulation-based system modeling, we show the effectiveness of the proposed
recovery strategy under the assumed fault model.

I. Introduction

There are an increasing number of CPS applications in almost all the vital infrastructures of
our modern society. Such systems often have a set of safety requirements that need to remain
satisfied at all times because a violation could have catastrophic consequences. However, software
components can exhibit unexpected deviations from the intended behavior due to bugs, potentially
violating the safety requirements. Unfortunately, formally assessing the correctness of software
components is a hard problem since the existing approaches currently require a large amount of
effort (cost) as well as specialized knowledge which is not yet widespread.

The difficulty of producing 100% correct software is a strong incentive to develop techniques
to enforce safety requirements in CPS in spite of unexpected misbehavior. However, safety is not
the only goal of a CPS, also the capability to remain in a fully operational state is of paramount
importance. Techniques designed to maintain safety have received substantial attention in the
literature [1–7]. In comparison, the problem of restoring nominal operation for a CPS has received
little attention. In this work, we improve the state of the art of safety enforcement for CPS and
discuss the use of resets as a strategy to fully recover from transient faults.

The Application-level Simplex architecture, proposed in [1–4], represents a well-known method
to provide safety guarantees for CPS. In the Simplex architecture, a verified, simple safety controller

1

ensures the stability of the plant. This conservative safety controller is complemented by a high-
performance complex controller. A decision module continuously evaluates the safety properties
and forwards actuation commands from the complex controller whenever the system operates
within the safety margins. If a misbehavior is detected from the state of the plant, control is
transferred to the safety controller. This prevents the occurrence of faults within the complex
controller from compromising the safety of the plant. The main issue with the Application-level
Simplex is that safety and complex controller are implemented as two applications on the same
platform. Hence, in presence of platform-level faults, there is no guarantee of correct behavior
from the safety controller. The issue is addressed in the System-level Simplex architecture [7]
by moving the safety controller and the decision module into a dedicated processing unit. The
safety controller in both the Application- and System-level Simplex has safety boundaries that are
typically pessimistic and statically computed at design time. The work in [5] demonstrated that
real-time reachability analysis can be employed to relax such static constraints. In fact, a plant can
be allowed to abandon its safety boundaries as long as (i) no constraints are violated, and (ii) the
state can be guaranteed to re-enter the safety region.

In this paper, we build upon the work in [5] and improve over System-level Simplex [7] in
three main directions. First, we show that when the real-time aspects of the safety controller are
considered, it is possible to provide safety guarantees that are as strong as what were provided by
System-level Simplex without the need for additional, dedicated hardware. Second, we extend
real-time reachability to check safety properties that depend not only on the current state of the
system as originally proposed in [5], but also on its history. Finally, to the best of our knowledge,
we are the first to extensively discuss how platform-wise resets can be employed in CPS as a way
to (i) perform fault recovery and to (ii) restore a full operational status.

In order to evaluate the validity and feasibility of the proposed strategy, we conduct a case
study using a radio-controlled helicopter testbed. For our study, we use sensor traces acquired in
flight while manually injected faults trigger platform-level recovery through resets. The acquired
data is used to tune and validate our helicopter model. Next, we perform simulation-based
analysis of the complete system based on the validated model. Our results show that: (i) restarting
represents a feasible fault recovery approach; (ii) it is possible to formulate systems constraints so
that static and time-dependent safety constraints are respected despite the occurrence of resets;
and (iii) if fast reset times can be achieved, the proposed recovery methodology has a negligible
impact on system’s performance.

This paper is organized as follows. A brief review of the related works is presented in Section II.
In Section III, we formalize the two categories of safety guarantees that our design can provide.
In Section IV, a background on the Simplex architecture is presented. Section V, provides the
overall design methodology. In Section VI, an alternative restartable architecture is proposed. The
evaluation on the helicopter system is provided in Section VII. Section VIII concludes the paper.

II. Related Work

Restart based strategies are generally divided into two categories, revival, reactively restart a
failed component, and rejuvination, prophylactically restart functioning components to prevent
state degradation. [8] introduces recursively restartable systems as a design paradigm for highly
available systems and uses a combination of revival and rejuvenation techniques. Authors in [9–11]
propose the concept of microreboot which consists of having fine-grain rebootable components
and trying to restart them from the smallest component to the biggest one in the presence of
faults. Some works have focused on failure and fault modelling [12–14] and try to find the optimal
rejuvenation strategy. These techniques are proposed for traditional computing systems and are
not applicable to CPS. In [15], authors propose improving reliability of real-time control systems
by executing simultaneous task replica of varying complexity. When a task fails, one of the shadow

2

tasks can provide the output while the failed task is restarted to a clean state. However, this
system has no mechanism to guarantee any system constraints. To our knowledge, this is the first
work to extensively consider enabling systematic restart-based recovery with safety guarantees for
CPS.

III. System Constraints

The safety requirements of a system are conditions that need to remain satisfied at all times during
system operation. In this work we consider two categories of constraints: Hard Constraints and
Overrun Constraints.

Hard Constraints are expressed in the form of hard, physical constraints over the system’s
state space. When considered together, they determine the feasible regions of the state space
where the system can operate. Each hard constraint is presented as a linear inequality of the form:

aT
m · x ≤ 1,

where x ∈ Rn is the vector of state variables of the system and am ∈ Rn is a vector of constants.
For instance, for a helicopter, a hard constraint is imposed on the altitude to prevent a crash.

On the other hand, Overrun Constraints are defined on the trajectory of the system over time.
An overrun constraint has the following form:

∀t;
∫ t+Twin

t
Stress(x(τ)) · dτ ≤ C (1)

Here “Stress” is a non-negative function that defines the amount of instantaneous stress on the
system for a given state, x. C is the maximum amount of accumulated stress that is allowed over
any time window of length Twin. Hence, each overrun constraint with index k is specified by the
tuple 〈Stressk(x), Ck, Twin

k 〉.
For example, the propulsion system is limited by its ability to dissipate heat. Consequently,

motor datasheets specify the maximum time the motor can be operated at full power. For
instance, the maximum duration allowed for “Hacker” brushless motors to operate at full power
is 15 seconds [16, 17]. this can be implied as

Stress(p) =
{

1 p > ph
0 p ≤ ph

and

∀t;
∫ t+16

t
Stress(p(τ)) · dτ ≤ 15

where p represents the instantaneous propulsion power and ph the threshold for full power level.
The combination of all the constraints, is referred to as System Constraints. The goal of design

verification techniques for CPS is to ensure that all the system constraints are met throughout
operation.

IV. Background on Simplex Architecture

The goal of using Simplex is to enable a system designer to use an unverified controller on the
system while ensuring the same safety guarantees that a verified safety controller would offer.
The safety controller is designed by approximating the system with linear dynamics in the form:
ẋ = Ax + Bu, for state vector x and input vector u. In this approach, safety constraints are expressed
as linear constraints in an LMI form. These constraints, along with the linear dynamics for the
system, are the inputs to a convex optimization problem that produces both linear proportional

3

controller gains K, as well as a positive-definite matrix P. The resulting linear-state feedback
controller, u = Kx, yields closed-loop dynamics in the form of ẋ = (A + BK)x. Given a state x,
when the input Kx is used, the P matrix defines a Lyapunov potential function (xT Px) with a
negative-definite derivative. As a result, the stability of the linear system is guaranteed using
Lyapunov’s direct or indirect methods. Furthermore, the matrix P defines an ellipsoid in the state
space where all constraints are satisfied when xT Px < 1. If sensors’ and actuators’ saturation
points were provided as constraints, the states inside the ellipsoid can be reached using control
commands within the sensor/actuator limits.

It follows that the ellipsoid of states, R = {x|xT Px < 1}, is a subset of the recoverable states.
As long as the system’s state remains inside of the ellipsoid, the system will be driven toward the
equilibrium point, i.e. where xT Px = 0, when control is handed over to the safety controller. Since
the potential function is strictly decreasing over time, any trajectory starting inside R will remain
there for an unbounded time window. Therefore no unsafe states will ever be reached as there are
no such states in R.

V. Methodology

In this section we describe our design methodology. The core of this design is the Simplex
Architecture proposed in [1–4]. Our first goal is to extend Simplex to provide runtime guarantees
for hard constraints and the additional category of overrun constraints in spite of faults in complex
controller. The second goal is to allow recovery from faults through platform-level restarts.

Our design is comprised of a verified, simple Safety Controller (SC) as well as an unverified
Complex Controller (CC). Thanks to the properties discussed in Section IV, SC is able to take
control and stabilize the system. To guarantee safety, therefore, the output of SC is set as the default
control command for the physical system. A real-time reachability module (RTR) periodically
checks whether the safety requirements of the system remain satisfied under all possible control
commands of the CC. If these conditions hold, CC is safely left in charge for the next control cycle.
This approach prevents logical bugs in the CC from violating any of the system safety constraints.

Sensors

W
D

 T
im

er

M
U

X

Safety
Controller

Main Unit

RTR
Module

Control Command

RESET PIN

Complex
Controller

Physical
plant

Figure 1: Restartable Simplex architecture.

It follows that respecting the real-time timing constraints of SC tasks is the only necessary
condition to guarantee safety. In order to check the schedulability of SC task in presence of restarts,
we model the restart as a sporadic non-preemptive task with the highest priority. Next, we check
whether the task set consisting of the SC and the restart task is schedulable. In Section I we present
a methodology that is an extension of classic response-time analysis and provides a sufficient
condition for schedulability in presence of restarts.

In this paper, the assumed fault model for the SC and the RTR modules is fail-stop and for
the CC is Byzantine. We rely on hardware watchdog timers to ensure that the platform will
recover after any fail-stop failure. Periodic, controlled resets or any strategy based on misbehavior
detection performed by the RTR module can be employed to recover from Byzantine failures.

4

In the rest of this section, we explain in detail how each component should be implemented
and how the proposed architecture meets our design goals.

I. Schedulability Analysis with Resets

In this section we present an analysis to reason about the schedulability of critical workload in
presence of faults and resets.

A necessary assumption for the analysis has to be made on the frequency of faults and the
consequent resets. For a well-tested system, faults that require resets are typically considered
to be rare events [18, 19]. In this section we assume that it is possible to determine a minimum
inter-arrival time for faults/resets. In order to reason on the schedulability in presence of faults,
we model a fault and the resulting system-wide reset as a sporadic task. Specifically, we indicate
with Tr the minimum inter-arrival time of the faults/resets and with Cr the length of the reset.
Conversely, if the minimum inter-arrival time for faults cannot be determined, the alternative
architecture described in Section VI can be used.

Let us consider a taskset T composed of n sporadic tasks τ1 . . . τn. Each task τi is characterized
by a minimum inter-arrival time Ti, a worst-case execution time (WCET) Ci and a relative
deadline Di ≤ Ti. Tasks are scheduled according to fixed-priority scheduling (e.g. RM [20]). We
further assume that the considered tasks are controller tasks. As such, each task instance (job) is
independent and performs sampling, computation and output of actuation commands. As such,
a job remains unaffected by system resets as long as it has completed or it has not been started
before a reset occurs. Conversely, if a particular task was executing (or preempted) when the reset
was triggered, the affected task instance will need to be re-executed after the reset sequence is
completed.

The underlying assumption is that minimal scheduler state can be preserved across resets. We
discuss miminal carryover of state across resets in the end of this section. Note that if scheduling
algorithms with job-level static priority are used (e.g. fixed-priority, EDF), the state of the scheduler
needs to be saved only at the boundaries of tasks’ activation and completion.

Furthermore, the following condition is assumed on the minimum inter-arrival time of
faults/resets:

max
τk∈T
{Ck}+ Cr < Tr. (2)

If the condition in Equation 2 is not satisfied, a sequence of resets could continuously cause
the same job to be restarted, ultimately preventing any useful computation to be performed on
the platform.

Given our model and assumptions, the goal is to understand under which workload conditions
a fault and subsequent reset do not compromise the timely execution of the safety controllers 1

In this work, we consider non-preemptive tasks. The main advantage of having non-preemptive
tasks is that at most one task instance is affected by a reset at any instant of time. It is possible
to analyze the response time of a task in presence of resets and check its schedulability using
Theorem 1.

Theorem 1. A set of non-preemptive sporadic tasks scheduled according to fixed-priority is schedulable in
presence of resets if the response time Ri of each task τi, calculated by solving the iterative formula

R(k+1)
i = Bi + ∑

τj∈hp(τi)∪{τi}

⌈
R(k)

i
Tj

⌉
Cj + Ir,i (3)

satisfies the condition: Ri ≤ Di. In Equation 3 the term Bi is the blocking from low priority tasks and is
calculated as:

1It is possible to run multiple control applications and consequently multiple SCs and CCs on the same platform.

5

Bi = max
τk∈lp(τi)

{Ck}. (4)

The term Ir,i represents the interference on task execution introduced by resets and is calculated as
follows:

Ir,i =

Cr + max {Bi, Ci, Hi} if R(k)
i < Tr

max {Iint
r,i , Imix

r,i , Iext
r,i } if R(k)

i ≥ Tr

(5)

where the term Hi = maxτk∈hp(τi)
{Ck} represents the longest instance of task with priority higher

than τi, while the terms Iext
r,i , Iint

r,i and Imix
r,i can be computed as in Equations 6, 7 and 8 respectively.

Iext
r,i = 2Cr + Bi + Ci + (dR(k)

i /Tre − 2)(Hi + Cr); (6)

Iint
r,i = dR(k)

i /Tre(Hi + Cr); (7)

Imix
r,i = Cr + max {Bi, Ci}+ (dR(k)

i /Tre − 1)(Hi + Cr). (8)

Proof. First, note that Equation 3 without the last term corresponds to the classic response time
analysis for non-preemptive fixed priority scheduling [21].

The additional term represents Ir,i the interference introduced by resets on the task instance
under analysis. In case only one reset occurs within the response time of the job under analysis,
the reset-related interference is maximized when the reset occurs at the end of the longest job in
the interval [0, R(k)

i]. This is captured by the first case of Equation 5.
Conversely, if two or more resets are possible within the response time of the considered task,

there are three possible outcomes that need to be considered.

Case 1. If min {Bi, Ci} > Hi then the worst-case corresponds to the case when two resets cause
the complete re-execution of the blocking task of length Bi and the job under analysis Ci, while
the remaining resets cause the re-execution of the longest interfering task of length Hi. In this
case, Iext

r,i is an upper-bound on the amount of reset-induced interference.

Case 2. If Hi > max {Bi, Ci} then the worst-case reset-induced interference is observed when the
reset always affects the longest interfering task (Hi). This case is captured by Iint

r,i .

Case 3. Finally, if max {Bi, Ci} > Hi > min {Bi, Ci}, the term Imix
r,i captures the worst-case. In this

scenario, one reset causes a re-execution of length max {Bi, Ci}, while the remaining resets cause
the re-execution of instances of the longest interfering task (Hi).

The maximum of the three cases described above is taken in Equation 5 when R(k)
i ≥ Tr.

As previously discussed, only the schedulaility of SC tasks needs to be checked to ensure
safety. Hence, the analysis proposed in Equation 3 of Theorem 1 needs to be satisfied only for
those tasks that correspond to SC modules. Note that since tasks with lower priority can block
higher priority tasks, the task-set T needs to include all the tasks (SC, CC, RTR, and etc.) running
on the platform.

In general, it can be safely assumed that the minimum inter-arrival time of resets is larger
than the largest task deadline, i.e. Tr > maxτk∈T {Dk}. If this more restrictive condition holds, the
analysis can be further simplified to consider only the first case of Equation 5.

In terms of preserving scheduler state across resets, this can be done by saving the schedule
status to nonvolatile memory at each context switch. An alternative mechanism is to synchronize
the schedule with the real-time clock and rely on timing to detect which task needs to be re-
executed.

6

II. Safety Controller (SC) Design

SC is a simple verified controller that is responsible for ensuring that hard and overrun constraints
are satisfied. Our methodology consists in: (i) finding a region of states such that, for any trajectory
taken by the system inside this region, all the constraints remain satisfied. Next, (ii) we design the
SC such that it can keep the state inside this region for an unbounded amount of time as long as
the starting state is inside the region. In order to do this, we first express all the constraints as
linear inequalities. Then we use a LMI solver to derive a feedback controller with the discussed
properties.

Hard constraints, as described in Section III, are already in the form of linear inequalities.
Hence, for a system with q hard constraints, we can easily define a region S such that all the hard
constraints are satisfied:

S = {x|aT
m · x ≤ 1, m = 1, . . . , q}. (9)

For an overrun constraint, we first define a subset of the state space as region O in the following
way:

O = {x|Stress(x) ≤ (1− α)C/Twin}. (10)

The integration of Stress(x) over any trajectory of length Twin inside O would remain less than
the maximum permitted accumulated stress, C. Here, α is the Manoeuvrability coefficient and is
0 ≤ α ≤ 1. The choice and impact of α will be further discussed in the context of Lemma 1. It can
be easily shown that for any trajectory of length Twin inside the region O, the overrun constraint
holds:

∀t;
∫ t+Twin

t
Stress(x(τ)) · dτ ≤ (1− α)C

Twin × Twin ≤ C (11)

However, in order to use the region O in a LMI-solver, we choose p linear inequalities to
determine a convex subset, Conv(O) ⊆ O such that:

Conv(O) = {x|cT
i · x ≤ 1, i = 1, ..., p} ⊆ O

Since linear matrix inequality can only handle linear systems, we also need to restrict the
system with actuator saturation limits (so that actuation values do not saturate the actuators).
Therefore, assuming that u ∈ Rm is the control signal to the actuators, saturation limits can be
expressed as:

bT
j · u ≤ 1, j = 1, . . . , r

For a system whose dynamics are described by ẋ = Ax + Bu, the SC is a linear state feedback
control given by u = Kx. The feasible region Γ of the system with q hard constraints, p overrun
constraints (each overrun constraint itself has pi linear inequalities) and r actuator constraints can
be described by:

Γ = {x|aT
m · x ≤ 1, m = 1, . . . , q,

cT
i,k · x ≤ 1, k = 1, . . . , pi, i = 1, . . . , p,

bT
j · u ≤ 1, j = 1, . . . , r}

(12)

Note that Γ ⊆ S , Γ ⊆ O, and Γ embeds saturation limits. Now, we can use a LMI solver2 to
find Γ, the gain matrix K of SC (SC is a state feedback controller), and the matrix Q. The latter
matrix Q is found such that the Lyapunov potential function V(x) = xTQ−1x constructed for the
system under the feedback control of K (i.e. ẋ = (A + BK)x) has negative-definite derivatives in

2This is a standard minimization problem and can be solved using the approach proposed in the second appendix of
the technical report in [22].

7

the region R = {x|xTQ−1x < 1} ⊆ Γ.
We refer to R as the Stability region. Due to the negative-definite derivatives of V(x) inside R,

any trajectory starting in R will remain in R indefinitely.

III. Real-Time Reachability Module (RTR)

We know that the SC can stabilize the system and guarantee all the constraints as long as the state
of the system is inside R. The goal of RTR module is to allow the system to operate beyond the
boundaries of region R.

In this section, we derive a set of conditions that if satisfied at the beginning of a cycle, hard and
overrun constraints are guaranteed to remain satisfied throughout that cycle under any behavior
of the CC. At every cycle Tc, RTR checks if those switching conditions hold (Theorem 2 and 3). If
they do, the CC is allowed to control the system. Otherwise, SC will be in charge.

Next, we describe the changes in the implementation of the RTR module, with respect to [5], that
are required to check the switching conditions for the additional category of overrun constraints.

In the rest of this section, we use Reach=T(x, C) to denote the set of states reached by system
from an initial set of states x after exactly T seconds have elapsed under the control of controller
C. Reach≤T(x, C) can be defined as

⋃T
t=0 Reach=t(x, C). In order to compute the reach set, we

use a modified version of the the face-lifting technique in [5]. We described our technique in
Section III.3.

III.1 Switching Conditions for Hard Constraints

Consider Tc the control interval and Ts an arbitrary settling time for the system after a restart.

Theorem 2. The hard constraints of the system will always remain satisfied under the control of CC, if at
every control interval, Tc, the following conditions hold:

1. Reach≤Tc(x, CC) ⊆ S ;

2. Reach≤Ts(Reach≤Tc(x, CC), SC) ⊆ S ;

3. Reach=Ts(Reach≤Tc(x, CC), SC) ⊆ R.

Proof. First, we provide an intuition of the proof. Condition 1 implies that all the states that can be
reached under the CC within the next control cycle satisfy the hard constraints. If a switch to SC
is triggered at any moment within the next control cycle, Condition 2 ensures that from the time
of switching, for an interval of length Ts, the system will not violate any of the hard constraints.
Finally, Condition 3, implies that by the end of Ts, the system is inside the stability region where
the hard constraints will remain satisfied indefinitely.

Formally, we prove this by induction. The base case holds since the system assumed to start
operation from a safe state. For the inductive step, let’s assume that the above conditions were
true at the previous cycle, k− 1, and the hard constraints are maintained from within the past
control interval. Now, at cycle k, if any of the above conditions are not satisfied the RTR will
trigger a switch to SC. Since the conditions 2 and 3 were true in cycle k− 1, switching to SC is
guaranteed to maintain the hard constraints satisfied indefinitely. Now, if at cycle k all the above
conditions hold, first we need to show that if the system is not restarted within the next cycle, hard
constraints will hold until the beginning of the cycle. Second, we need to show that controller can
be safely switched to SC at any point from now until the beginning of next cycle (and including
the beginning of the next cycle).

Condition 1 implies that if no switching occurs within [kTc, (k + 1)Tc], the hard constraints
will remain satisfied during this interval and at the beginning of the next cycle. Now, we

8

show that the system is also safely switchable in this interval. If a switching from CC to SC is
triggered at a time tswitch ∈ [k.Tc, (k + 1).Tc], where the state of the system is x(tswitch), we have
x(tswitch) ∈ Reach≤Tc(x, CC), hence based on condition 3, Reach≤Ts(x(Ts), SC) ⊆ S which means
that the system will not violate hard constraint for the next Ts seconds. Moreover, according to
condition 2, we have Reach=Ts(x(tswitch), SC) ⊆ R which indicates that after Ts, states will be
inside R, hence, hard constraints will remain satisfied indefinitely.

III.2 Switching Conditions for Overrun Constraints

We assume that switching conditions for overrun constraints are checked only if the switching
conditions for hard constraints are already satisfied. Therefore, Condition 3 in Theorem 2, implies
that if a switch to SC occurs within the upcoming Tc time units, the SC will be able to safely bring
the system back into the stability region within at most Ts time units. Hence, all the trajectories
that satisfy the hard constraints have a form such that there is a time point ts at which the trajectory
enters the stability region R while the SC controller is in charge. For such trajectories, Lemma 1
implies a general condition under which a given overrun constraint remains satisfied throughout
the execution.

Lemma 1. Assume an arbitrary trajectory that at some point in time, ts, enters the stability region R
while the SC is the active controller from that point forward. An overrun constraint is satisfied throughout
such a trajectory if the following condition holds:

∀t ∈ [0, ts − Twin] :
∫ t+Twin

t
Stress(x(τ)) · dτ ≤ αC (13)

Proof. Here, α is the maneuverability constant3. To show that a overrun constraint is satisfied
throughout the trajectory, we need to show that for all the time windows of size Twin in [0,+∞]
the accumulated stress is less than the limit of the overrun constraint. First, for any interval of
size Twin starting at t ∈ [0, ts − Twin], Condition 13 implies that the overrun constraint is satisfied.
Second, for any interval of size Twin starting at t ∈ [ts, ∞], the entire length of the trajectory
during the interval is inside the stability region and the system is controlled by the SC. Hence, it
is guaranteed by Equation 11 that the overrun constraint will remain satisfied.

Finally, we need to show that the overrun constraint is satisfied for all the intervals of size Twin

starting at t ∈ [ts − Twin, ts]. We have the following:

∫ t+Twin

t
Stress(x(τ)) · dτ =∫ ts

t
Stress(x(τ)) · dτ +

∫ t+Twin

ts
Stress(x(τ)) · dτ

≤ αC +
(1− α)C

Twin (Twin + t− ts) ≤ C

Note that the last line follows from Twin + t − ts ≤ Twin. Hence, the overrun constraints are
satisfied for the entire time span of the trajectory.

Lemma 1, implies a general condition for a trajectory to satisfy overrun conditions. However,
switching conditions need to be time-discrete in order to be checked by the RTR module in

3The Maneuverability Coefficient is a design parameters such that 0 ≤ α ≤ 1. The choice of a larger α can increase the
stability region of the SC. At the same time, it makes the conditions of Theorem 3 harder to satisfy, resulting in more
frequent switches from CC to SC. Thus, α needs to be chosen carefully to balance this trade-off.

9

every cycle. Theorem 3 provides a way to derive discretized safe switching conditions based on
Lemma 1.

The key idea in Theorem 3 is to keep track of the accumulated stress during the past Twin −
(Tc + Ts) time window. Next, we compute the maximum of the sum for the stress that could be
accumulated over the future interval of length Tc + Ts. This represents the worst-case accumulated
stress from the current time until SC can bring back the system inside the stability region.
Intuitively, if in total the worst-case future stress and the accumulated (past) stress are below the
limit of the overrun constraint, the condition is satisfied. Otherwise, RTR will need to trigger a
switch to SC.

Theorem 3. Assuming that Twin > Ts + Tc, an overrun constraint will always remain satisfied under the
control of CC, if at every control interval j the following condition holds:

j

∑
p=j−(R+(M−1)·L)

(MaxSumStressx([p · Tc, (p + 1) · Tc]))

+MaxSumStressx([(j + 1) · Tc, Ts]) ≤ αC

(14)

Here, MaxSumStressx([t1, t2]) is a function defined to over-approximate the sum of stress over
the trajectory in the interval of [t1, t2]. It is defined as:∫ t2

τ=t1

Stress(x(τ)) · dτ ≤ MaxSumStressx([t1, t2])

Additionally, we define L, Q, and R as follows:

L =

⌈
Twin − (Ts + Tc)

(M− 1)Tc

⌉
, Q =

⌊
j
L

⌋
, R = j−QL

Here M is the length of the array we use to keep track of past stress, in which an element stores
the cumulative stress over L consecutive control cycles.

Proof. The current time is t = jTc. First, we show that Condition 14 provides an over-approximation
of the accumulated stress over the considered time interval ∆T. From the definition MaxSumStressx
we have:

j

∑
p=j−(R+(M−1)·L)

(∫ (p+1)·Tc

p·Tc
Stress(x(τ)) · dτ

)

+
∫ (j+1)·Tc+Ts

(j+1)·Tc
Stress(x(τ)) · dτ

≤
j

∑
p=j−(R+(M−1)·L)

(MaxSumStressx([p · Tc, (p + 1) · Tc]))

+MaxSumStressx([(j + 1) · Tc, Ts]) ≤ αC.

Next, we prove that the considered time interval ∆T is always longer than Twin. In fact:

∆T =((j)− (j− (R + (M− 1)L) + 1))Tc + Ts

=(R + (M− 1)L + 1)Tc + Ts ≥ Twin + RTc ≥ Twin

It follows that the total accumulated stress during ∆T is less than αC. Hence, during any interval

10

of size Twin the accumulated stress is below the limit of the considered overrun constraint. Thus,
Lemma 1 holds and the proof follows.

ALGORITHM 1: RTR module execution flow
1 Algorithm RTRModule()
2 set R = 0 and initialize all elements of array PastStress to MAXDOUBLE
3 while true do
4 statej−1 = readCurrentStateFromSensors /*At the beginning of j-1th control cycle*/
5 CCcommand = Control Command applied at j-1th cycle
6 statej, MaxSumStressJ−1 = Reach=Tc(state

j−1, CCcommand)
7 PastStress[M] += MaxSumStressJ−1

8 SumOfPastStress = Sum all elements of PastStress
9 reachCC, MaxSumStressJ = Reach≤Tc(state

j, CC, SumOfPastStress)
10 reachSCAtTs, – = Reach=Ts(reachCC, SC)
11 reachSCBeforeTs, sumStressUntilSettling = Reach≤Ts(reachCC, SC)
12 If R == L Then Shift PastStress to left; set R = 0 ; End
13 /*At the end of j-1th control cycle*/
14 If SumOfPastStress + MaxSumStressJ + sumStressUntilSettling < αC and

reachCC ⊆ S and reachSCAtTs ⊆ R and reachSCBeforeTs ⊆ S then Put CC in
charge; else switch to SC; End

15 R++ and Update WD timer.
16 end

Figure 2 illustrates how Theorem 3 can be applied to the system. In this example, the goal is to
guarantee that the accumulated stress over a window of 14Tc will not exceed a fixed threshold.
The memory array used to keep track of the past stress is 4 blocks in size. From the definition of L
in III.2, each memory block stores the total stress over 4 cycles to cover the whole window. The
current time is 22Tc, (22nd cycle). The future time required for the system to settle in the region R
is Tc + Ts = Tc + 2Tc = 3Tc. The accumulated stress over the time window of length 14Tc must be
smaller than the permitted threshold (condition of Theorem 3). Hence, we need to compute the
stress over the next 3Tc plus the stress over the past 11Tc time units. The sum of the values from
A[1] to A[4] in memory provides the accumulated stress over the past 14 cycles (i.e. from 8Tc to
22Tc), which is an over-approximation of what required (11 cycles). As long as the total between
future stress and past stress remains under the limit, the considered overrun constraint is met.

10 3 5 4 7 9 11 3 7 0 1 16 3 3 2 7 9 3 5 6 7 8 9 TS

𝐿 = 4 𝑅 = 2

𝑄 = 5 PS[1]=24 PS[2]=15 PS[3]=23 PS[4]=15

Array Size = 4 𝑇%&' = 14𝑇(𝑇) = 2𝑇(

𝑇%&'= 14𝑇(

0 1𝑇(2𝑇(3𝑇(4𝑇(5𝑇(6𝑇(7𝑇(8𝑇(9𝑇(10𝑇(11𝑇(12𝑇(13𝑇(14𝑇(15𝑇(16𝑇(17𝑇(18𝑇(19𝑇(20𝑇(21𝑇(22𝑇(23𝑇(24𝑇(25𝑇(

future

Current Time, j = 22

PS: PastStress Array

Figure 2: An example to clarify Theorem 3. Each element shows the maximum cumulative stress within that
control cycle.

11

III.3 RTR Module Implementation

The structure of the main loop of the RTR module is presented in Algorithm 1. For simplicity,
only a single overrun constraint is considered. Each iteration of the while loop in Algorithm 1
performs the required computation for a single control cycle.

Here j is the cycle for which the RTR module needs to determine whether the switching
conditions hold or not. The decision of the RTR module needs to be ready at the beginning of the
cycle j. Hence, those conditions need to be assessed during the previous cycle, j− 1. Algorithm 1
uses the state at the beginning of (j− 1)th cycle (line 4), as well as the exact control command
generated at the beginning of (j− 1)th cycle (line 5) to find the statej which is the reachable
set of states at the beginning of j (line 6). PastStress is an array of size M to keep track of the
stress during the past cycles. In each iteration, before evaluating the conditions for cycle j, the
MaxSumStress is computed over the (j− 1)th cycle and added to the last element of PastStress
(line 7).

Next, the reachable sets required to check Conditions 1-3 in Theorem 2 for cycle j and also the
accumulated stress during the jth cycle and until the settling time are computed (lines 9,10, and
11). Finally, in line 14 the algorithm checks weather all the constraints are met. In case they are
all met, control commands from CC are forwarded to the actuators, otherwise SC is selected to
control the system.

III.4 Reach Function

ALGORITHM 2: Modified Reach algorithm that also calculates MaxSumStress

1 Algorithm Reach(currentBox, Controller)
2 MaxSumStress= 0;
3 while reachTimeRemaining > 0 do
4 Box [] nebs = constructNeighborhoods(currentBox,reachTimeStep);
5 crossReachTime= minCrossReachTime (nebs);
6 advanceReachTime=min (crossReachTime,reachTimeRemaining);
7 currentBox=advanceBox (nebs,advanceReachTime);
8 MaxSumStress += StressMax(currentBox)×advanceReachTime;
9 reachTimeRemaining -= advanceReachTime;

10 end
11 return currentBox, MaxSumStress

The function Reach, used in Algorithm 1, implements a modification of the face-lifting real-time
reachability algorithm originally proposed in [5] to compute the maximum cumulative stress
(MaxSumStress) over a given time, in addition to the reachable set of states. Implementation of
Reach is described in Algorithm 2.

In this technique, a set of states is tracked at specific snapshots in time. Initially, at time 0, the
set of states being tracked is set to the initial states of the system. Time is iteratively advanced
(by some time step) from the initial states, which changes the set of states being tracked, until
the desired final time is reached. The time needed to execute this algorithm is deterministic and
adjustable. And, if there is more time left, the accuracy can be improved.

The representation used to track the set of states for real-time reachability is a single n-
dimensional hyper-rectangle (box), where n is the number of state space variables. The way the
set of states changes over time is only based on the derivatives near the boundaries of the tracked set
of states. Since all the state trajectories are continuous, the trajectories cannot leave the tracked set
of states without first passing through the boundary, and therefore reasoning about the behavior

12

at the boundaries is a sound way to bound all possible trajectories. Figure 3 depicts an example of
a region and the neighborhoods around it.

F

 N[3]

 N[2]

N[4]

N[1] xΔ
2

xΔ
1

Figure 3: Example: Neighborhoods (N[1] to N[4]) are constructed around states in region F.

A set of neighborhoods, N[i]s, is constructed around each facei of the tracked states, F with an
initial width (line 4). Next, the maximum derivative in the outward direction, dmax

i , inside each N[i]
is computed and, crossing time tcrossing

i = width(N[i])/dmax
i is computed over all neighborhoods

and the minimum of all the tcrossing
i is chosen as time to advance (line 6). Finally, every face

is advanced to facei + dmax
i × ta, (the face is ‘lifted’ at the maximum derivative. line 7)). For

further details on inward neighborhood versus outward neighborhoods, and the choosing of
neighborhood widths and time steps refer to [5].

In order to compute the accumulated stress, we require the system designer to provide a
function, StressMax, for each overrun constraint that returns the maximum value of Stress over a
hyper-rectangular region (box) of states. Notice that this does not require complex computations.
For instance, if Stress is a convex function, StressMax can evaluate Stress at the corners of the box
and find the maximum. In every intermediate step of Reach function, the maximum of the Stress
over the intermediate reachable box is found using StressMax. The upper-bound of accumulated
stress is found by multiplying the maximum of stress in the length of the intermediate time
interval (line 8).

Remark 1. After a restart, the RTR module loses its memory. In order to ensure that Overrun Constraints
are not violated, elements of the array PastStress[M] are initialized to MaxDouble. As a result, immedi-
ately after the restart is completed, RTR would put SC in charge for a few cycles until a recorded history is
available and then the control can be safely passed to the CC.

VI. An Alternative Architecture

The design method described so far requires that the task of the SC to be schedulable in spite of
resets, as discussed in Section I. It follows that the rate at which such a task can operate depends
not only on the frequency of faults, but also on the time required for a full restart. Table 1 in
Section VII reports the reset time for three different commercial platforms. Let us consider the
fastest reboot time in the table (45 ms), and assume that only one SC task is present with a WCET
of 1 ms. Under these assumptions, schedulability of the SC task in presence of resets can only
be satisfied at a rate lower than or equal to about 20 Hz. Having such a low frequency for SC
(i.e. long Tc), makes it harder to satisfy the switching conditions of Theorem 2 and consequently,
decreases the size of the region over which the system can safely operate. Depending on the
system dynamics and the constraints, this region can become small and prevent the system from
making progress.

A possible way to overcome this problem consists of computing the maximum time that a
system can be left in open-loop, for instance with fixed actuators’ outputs, without abandoning
its safety region. In this way, one or more instances of critical tasks can be skipped after a reset
without compromising the stability of the system. Such approach is out of the scope of this work
and we plan to investigate its feasibility as a part of our future work.

13

Alternatively, additional hardware can be used to overcome the aforementioned issue. Specifi-
cally, it is possible to migrate the SC to a dedicated processing unit. The resulting architecture is
depicted in Figure 4. This prevents the SC from being affected by restarts, as long as control is
automatically transferred to the SC while the main computation unit undergoes a restart. This
architecture is similar to what was proposed in our previous work, System-level Simplex [7].
System-level Simplex, however, exploits this hardware redundancy to protect the system against
the faults that may occur in the underlying layers of system (such as the OS) and utilizing it to
recover from faults is not fully investigated and evaluated.

Physical
plant

Sensors

W
D

 T
im

er

M
U

X

Safety
Controller

Rescue Unit Main Unit

FS Switch

RTR
Module

Control Command

FS Enable

RESET PIN

Complex
Controller

Figure 4: Restartable Simplex architecture with dedicated safety controller hardware unit.

The mechanism to reliably switch between controllers is enabled by a fail-safe switch (FS). The
input to the FS is the FSEnable signal, which can assume three values: active low, active high,
or invalid. The FS selects control commands from the CC if it receives an active high FSEnable
signal. Conversely, if the input is active low or invalid, which is the case during the restart of
the main unit, the FS selects the SC as the control unit. This approach constitutes a reliable way
to immediately put the safety controller in charge when the main unit is undergoing a restart.
Intuitively, all the results presented in Section V are also valid in this architecture. Moreover, the
system remains stable no matter what is the frequency or the length of resets, because the SC is
able to maintain stability for arbitrarily long time intervals.

VII. Evaluation

In this section, we present an evaluation of the proposed architecture. We demonstrate robustness
against faults and timely recovery of a RC helicopter system through a combined testbed evaluation
and simulation-based system modelling. Since the control rate for the helicopter needs to run at
50 Hz, we deployed the architecture described in Section VI.

I. Model Development and SC Design

For the helicopter system, the goal is to design a SC that can maintain the following constraints.
The safety constraint is to maintain a minimum altitude of 10 meters from the ground (i.e. not
crash). The overrun constraint for this system is on the amount of time that the vertical velocity
(velocity over z-axis) is higher than 3 m/s seconds. This velocity shall not be maintained for more
than 15 seconds within any time window of length 60 seconds:

Stress(ż) =

{
1 ż > 3
0 ż ≤ 3 , ∀t;

∫ t+60

t
Stress(ż(τ))dτ ≤ 15

14

I.1 Model Dynamics

Let’s first describe the helicopter dynamics. We use a model obtained from the aerospace literature
that has been proposed and utilized for helicopter controller design in [23–26]. In this model,
control authority for a helicopter is obtained via lift generated by the main and tail rotors. The
vector lift generated by a rotor disk lies along its axis of rotation and the tail rotor orientation
is fixed. The main rotor lift is decomposed into three components (−ω2, ω1, u) ∈ A and the tail
rotor force into one component (0,−ω3, 0) ∈ A, all in the body-fixed frame. In this notation, u
is the principal lift force source and ω = (ω1, ω2, ω3) are the three torque controls (the first two
coming from the lateral components of the main rotor lift due to inclination of the main rotor
disk). The classical ’yaw’, ’pitch’, and ’roll’ Euler angles η = (φ, θ, ψ) are being used in this model.

Matrix R represents the orientation of the helicopter:

R =

 cθcφ sψsθcφ − cψsφ cψsθcφ + sφsφ

cθsφ sψsθsφ + cpsicφ cψsθsφsψcφ

−sθ sψcθ cψcθ

The full helicopter dynamics in the generalized coordinates (ξ, η) are derived from the Euler-

Lagrange equations.

mξ̈ = R

 −ω2
ω1 −ω3
−u

+

 0
0

mg

 (15)

Iη̈ = −C(η, η̇)η̇ + τ (16)

here, ξ = (x, y, z) and C(η, η̇) is the coriolis matrix. Torque applied to the helicopter transforms
into generalised forces on the Euler coordinates (φ, θ, ψ) via ω1

ω2
ω3

 =
1
r

 −sθ 0 1
cθsψ cφ 0
cθcψ −sψ 0

 τ (17)

where r denotes the offset of the main rotor hub from the center of the mass of the helicopter.
Equation 15 can be re-written as the following:

mξ̈ = u

 −cψsθcφ − sψsφ

−cψsθsφ + sψcφ

−cψcθ

+

 0
0

mg

+

 cθcφ (sψsθcφ − cψsφ)
cθcφ (sψsθsφ + cψcφ)
−sθ sψcθ

(−ω2
ω1 −ω3

)
(18)

I.2 Model Linearization

In order to design the SC using the steps explained in section II, the model needs to be expressed
in a linear form. From equation 18, for the z-dynamics of the system we have

mz̈ = −ucψcθ + mg + sθω2 + sψcθ(ω1 −ω3) (19)

In order to satisfy the safety constraints, we set the goal of the SC to stabilize the altitude
(ż = 0) and to level the helicopter (φ = 0, θ = 0, ψ = 0). We set the linear domain such that the
components of η are norm smaller than π/3. Now, in the neighbourhood of the equilibrium point,

15

the last two terms of equation 19, that represent the small body force perturbations, are relatively
small and can be neglected for the controller design. Thus, we have the following for the dynamics
of the altitude.

mz̈ = −ucψcθ + mg (20)

Now, we can use a control transformation to get to a linearized system. Consider the following
control transformation:

u = m.
µ + g
cψcθ

, τ = C(η, η̇)η̇ + I.τ̂ (21)

By replacing 21 into the 15 and 20, the explicit forms of linearized system in the absence of the
small body forces in equation 19 is{

ż = vz, v̇z = −µ φ̇ = γ, γ̇ = τ̂φ

θ̇ = ω, ω̇ = τ̂θ ψ̇ = λ, λ̇ = τ̂ψ
(22)

Above equations can be represented as ẋ = Ax + Bu where x = [z, vz, φ, γ, θ, ω, ψ, λ]T and
u = [µ, τ̂φ, τ̂θ , τ̂ψ]T . Now, we design the state feedback controller of u = Kx.

I.3 Safety and Overrun Constraints

The hard constraint on the minimum height can be expressed as a linear inequality as: a1 =
[1/10, 0, 0, 0, 0, 0, 0, 0]T . For the overrun constraint, we consider a maneuverability coefficient α = 1.
Hence, Equation 10 can be written as

O = {x|Stress(x) ≤ 0} ⇒ ∀x ∈ O, vz = ż ≤ 3

. It follows that linear inequality resulting from the above constraint is: c1 = [0, 1/3, 0, 0, 0, 0, 0, 0]T .

I.4 SC Design

The goal is to design a SC which is able to satisfy these constraints. First, the linear model used
for the system is only valid in the region |φ| , |θ| , |ψ| ≤ π/3. In order to ensure that the system
remains in this region, we add the following constraints:

a2 = −a3 = [0, 0, 3/π, 0, 0, 0, 0, 0]T

a4 = −a5 = [0, 0, 0, 0, 3/π, 0, 0, 0]T

a6 = −a7 = [0, 0, 0, 0, 0, 0, 3/π, 0]T

Denoting with umax the saturation limit for the lift power of the main rotor, we have µ <
cψcθumax − 1. For the region |ψ| , |θ| < π/3 we can write µ ≤ cos(π/3)2umax − 1 = umax/4− 1.
We define µmax = umax/4− 1. Thus we have

b1 = −b2 = [1/µmax, 0, 0, 0]T

Finally, the stability region of the SC can be defined as:

Γ = {x | aT
i x < 1, i = 1, . . . , 7, cT

1 x < 1, bT
1 u < 1, bT

2 u < 1}

Given the linearized system of equations (see Equation 22) with the set of constraints Γ, we need
to solve the minimization problem in Section II to obtain K and Q. Finally, the SC has dynamics
u = Kx and the stability region can be derived as R = {S | xTQ−1x ≤ 1}.

16

I.5 Model Validation and Identification

One of the advantages of the RTR algorithm is that the reachability of the system needs to be
calculated only for a short interval of time in the future. As long as the model can predict the real
behavior with a reasonable error for a short interval, RTR can be utilized.

First, we identified the parameters of the non-linear model from recorded flight data using the
MATLAB grey-box model identification toolbox. In order to validate our model, we compared
those flight traces against the simulated traces and measured the error. The error trend for the
altitude is depicted in Figure 5. For each interval length, 100 simulations starting at random
points of time were performed. Hence, the developed model is realistic enough for the purpose of
evaluating the proposed methodology.

0"
0.5"
1"

1.5"
2"

2.5"

2.85" 5.7" 8.55" 11.4" 17.1"

Er
ro
r$(
M
et
er
)$

Simula0on$Length$(seconds)$

Figure 5: Simulation error for the altitude parameter.

II. Restarting in Action

The goal of this experiment is to demonstrate that the proposed switching and recovery method is
applicable to a real safety critical CPS. We used a minimal implementation of the design with SC
on a dedicated processor, a remote operator as CC, and a manual signal as the source of restart.
Our testbed consists of an Align T-Rex 450 radio-controlled helicopter equipped with a ArduPilot
APM 2.6 board [27] as the main unit and a Bavarian Demon board [28] as the rescue unit4. A
Futaba FSU-2 [29] is utilized as the failsafe switch (FS).

In this test, during normal operation, the restart module generates a valid PWM signal, which
instructs the FS to forward CC-generated commands. When the restart command from the ground
control is received, an interrupt is triggered on the main unit that initiates a reset. During the reset,
the PWM value in input to the FS becomes invalid, triggering a switch to the rescue unit. After the
restart is completed, the main unit outputs a valid PWM pulse again, and control is handed back
to the CC. The trace recorded from the helicopter during the flight is depicted in Figure 6. The
first and second graphs, depict the altitude and the level angles of the helicopter, respectively. The
third graph shows the time frame during which the SC was active. Even though the time required
to restart the APM was only 85 ms, we manually forced the system to stay longer in the booting
mode for evaluation purposes. The video recorded for this experiment can be found at [30].

III. Evaluation with the Simulated Model

For further analysis and testing of situations that are difficult to implement on the real system, we
conducted our analysis using the validated model.

4It is important to mention that the Bavarian Demon board is not a fully programmable board but it is essentially
a tunable PID controller. This unit can easily be replaced with a PID controller implemented on a general purpose
micro-controller.

17

Time(seconds)
496 498 500 502 504 506 508 510 512 514

A
lt
it
u

d
e

 (
m

e
te

rs
)

5

10

15

20

Time(seconds)
496 498 500 502 504 506 508 510 512 514

A
n

g
le

s
 (

d
e

g
re

e
s
)

-30

-20

-10

0

10

Time(seconds)
496 498 500 502 504 506 508 510 512 514S

a
fe

ty
 C

o
n

tr
o

lle
r

A
c
ti
v
e

-0.5

0

0.5

1

1.5

Figure 6: Altitude and the level angles of the helicopter during an in-flight restart

III.1 Progress Analysis

Restarting the platform, impacts the progress of the system towards the CC goal. The two
parameters that determine the amount of impact are (i) the frequency of restarts and (ii) the
time required to complete the restart. Figure 7, depicts the normalized comparison for various
restart intervals and reboot lengths for a helicopter system where the CC is designed to keep the
helicopter in a fixed altitude and with a fixed forward velocity. As seen in Figure 7, cases with a
small ratio of reboot length to restart interval have an almost negligible progress slowdown.

4"
16"

28"
40"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6" 0.7" 0.8" 0.9" 1" 1.1" 1.2" 1.3" 1.4" 1.5" 1.6" 1.7" 1.8" 1.9" 2"

Co
nt
ro
lle
r(P

er
fo
rm

an
ce
((N

ro
m
al
iz
ed

)(

Restart(Time(

4" 8" 12" 16" 20" 24" 28" 32" 36" 40" 44" 48"

Re
sta
rt

Int
erv
al

Figure 7: Impact of the restart interval and restart length on the control performance of system.

Next, we measured the time requirements for restarting three embedded platforms used in
various applications: Freescale MPC564xL board (designed for automotive applications), Ardupilot
APM 2.6 (commonly used in low-end UAVs) and the Intel Edison board (designed to target
Internet-of-Things applications). The restart times measured for these platforms are presented in
Table 1.

The conclusion that arises from the results in Figure 7 and Table 1, is that the impact of restarts
on the progress of an embedded system with a typical fault rate can remain negligible. It follows
that, if specific properties about the state of the system can be inferred after a reset, controlled
periodic resets could also be introduced as a low-overhead strategy to “refresh” a live CPS and

18

Platform Name OS Type Restart Time
Freescale MPC564xL ERIKA RTOS 45 ms
Ardupilot APM 2.6 ArdOS 80 ms

Intel Edison Yocto Linux 2031 ms

Table 1: Time required for full system restart

preventing the occurrence of unexpected faults.

III.2 Stabilizable Region Comparison

In this experiment, we compare the size of the operational region of the helicopter system under
the original LMI-based Simplex [1–4], face-lifting real-time reachability [5] and our proposed
modified RTR.

Since LMI-Simplex and RTR techniques cannot provide guarantees on the overrun constraints,
in this experiment, only the hard constraints are considered. The projection of the stabilizable
region, for z and ż is shown in Figure 8. In order to demonstrate an adverse case behavior, we
have changed the projection plane such that we can observe the behavior near the boundaries of
the stability region. In Figure 8(a), 8(b), 8(c) and 8(d) the level angles of helicopter were increased,
which resulted in a reduction in the size of the stability region. As seen in the figures, when only
the hard constraints of the system are considered, the obtained stability region via face-lifting
real-time reachability and our modified RTR are identical. These figures, highlight the benefit
of using real-time reachability and modified real-time reachability by the larger provably safe
recoverable region (yellow).

(a) φ = 0, θ = 0, ψ = 0 (b) φ = 0, θ = 0, ψ = π/6

(c) φ = 0, θ = π/6, ψ = π/6 (d) φ = π/6, θ = π/6, ψ = π/6

Figure 8: Projection of stabilization region. Blue: LMI-Simplex; yellow: RTR and modified RTR; and red:
unrecoverable. In all the figures we have φ̇ = 0, θ̇ = 0, θ̇ = 0.

III.3 Modified RTR with Overrun Constraints

Next, we demonstrate that providing further guarantees on the overrun constraints can limit the
operational region of system. The overrun constraint considered here was formulated in Section I.

19

Whether the overrun constraints is satisfied depends not only on the current state, but also on the
trajectory followed by the system. Therefore, we project the stabilization region under increasing
levels of accumulated stress over the past time window. Figures 9(a) to 9(d) depict the stability
regions of the system from a given state for different values of accumulated stress. From left to
right, top to bottom, the considered amount of accumulated stress is 12, 14, 14.5 and 15. It can
be noted that in Figure 9(a) classic face-lifting RTR and our modified RTR produce an identical
region because 3 seconds are sufficient for the SC to reduce vx = ż below the 3 m/s threshold. As
the accumulated stress increases, the size of the green region decreases. Finally, in Figure 9(d),
where the accumulated stress is already 15, the ż = 3 boundary cannot be crossed at any time.

(a) Cumulative stress = 12 (b) Cumulative stress = 14

(c) Cumulative stress = 14.5 (d) Cumulative stress= 15

Figure 9: Blue: LMI-Simplex; yellow: RTR; green: modified RTR; and red: unrecoverable. Yellow: only hard
constraints satisfied. Green: both overrun and hard constraints satisfied.

VIII. Conclusions

In this paper, we enable continuously-actuated CPS using Simplex design to (i) to recover from the
faults in a timely manner by restarting at runtime. Moreover, (ii) we propose a novel technique to
guarantee a more complex category of safety constraints with a temporal aspect. And, (iii) through
a proof-of-concept minimal implementation on a small unmanned helicopter and simulation-based
system modeling, we show the effectiveness of proposed recovery architecture under the assumed
fault model.

References

[1] L. Sha, “Dependable system upgrade,” in Real-Time Systems Symposium, 1998. Proceedings., The
19th IEEE. IEEE, 1998, pp. 440–448.

[2] ——, “Using simplicity to control complexity.” IEEE Software, 2001, pp. 20–28.

[3] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable real-time systems,” in Aerospace
Applications Conference, 1996. Proceedings., 1996 IEEE, vol. 1. IEEE, 1996, pp. 335–346.

[4] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. Kumar, “The simplex reference
model: Limiting fault-propagation due to unreliable components in cyber-physical system
architectures,” in Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE International. IEEE,
2007, pp. 400–412.

20

[5] S. Bak, T. T. Johnson, M. Caccamo, and L. Sha, “Real-time reachability for verified simplex
design,” in Real-Time Systems Symposium (RTSS), 2014 IEEE. IEEE, 2014, pp. 138–148.

[6] S. Z. Bak, “Industrial application of the system-level simplex architecture for real-time
embedded system safety,” 2009.

[7] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The system-level
simplex architecture for improved real-time embedded system safety,” in Real-Time and
Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEE. IEEE, 2009, pp.
99–107.

[8] G. Candea and A. Fox, “Recursive restartability: Turning the reboot sledgehammer into a
scalpel,” in Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on. IEEE,
2001, pp. 125–130.

[9] ——, “Crash-only software,” 2003.

[10] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox, “Jagr: An autonomous self-recovering
application server,” in Autonomic Computing Workshop. 2003. Proceedings of the. IEEE, 2003,
pp. 168–177.

[11] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot — a technique for
cheap recovery,” in Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04, 2004, pp. 3–3.

[12] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software rejuvenation,”
Dependable and Secure Computing, IEEE Transactions on, vol. 2, no. 2, pp. 124–137, 2005.

[13] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of software rejuvenation using
markov regenerative stochastic petri net,” in Software Reliability Engineering, 1995. Proceedings.,
Sixth International Symposium on. IEEE, 1995, pp. 180–187.

[14] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvenation: Analysis, module
and applications,” in Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth
International Symposium on. IEEE, 1995, pp. 381–390.

[15] C. Zimmer and F. Mueller, “Fault resilient real-time design for noc architectures,” in Cyber-
Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on. IEEE, 2012, pp.
75–84.

[16] E-Flite Inc., “Power 10 brushless outrunner motor datasheet,” http://www.e-fliterc.com/
ProdInfo/Files/EFLPower10OutrunnerInstructions.pdf, accessed: 2015-10-10.

[17] B. Venkataraman, B. Godsey, W. Premerlani, E. Shulman, M. Thaku, and R. Midence, “Fun-
damentals of a motor thermal model and its applications in motor protection,” in Protective
Relay Engineers, 2005 58th Annual Conference for. IEEE, 2005, pp. 127–144.

[18] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of the IEEE, vol. 91,
no. 1, pp. 112–126, 2003.

[19] H. Kopetz, On the fault hypothesis for a safety-critical real-time system. Springer, 2004.

[20] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time
environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

21

http://www.e-fliterc.com/ProdInfo/Files/EFLPower10OutrunnerInstructions.pdf
http://www.e-fliterc.com/ProdInfo/Files/EFLPower10OutrunnerInstructions.pdf

[21] L. George, N. Rivierre, M. Spuri, and I. national de recherche en informatique et en automa-
tique (France), Preemptive and Non-preemptive Real-time Uniprocessor Scheduling, ser. Rapports
de recherche. INRIA Centre, 1996.

[22] D. Seto and L. Sha, “A case study on analytical analysis of the inverted pendulum real-time
control system,” DTIC Document, Tech. Rep., 1999.

[23] F. Mazenc, R. Mahony, and R. Lozano, “Forwarding control of scale model autonomous
helicopter: a lyapunov control design,” in Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, vol. 4, Dec 2003, pp. 3960–3965 vol.4.

[24] O. Shakernia, Y. Ma, T. J. Koo, and S. Sastry, “Landing an unmanned air vehicle: Vision based
motion estimation and nonlinear control,” Asian journal of control, vol. 1, no. 3, pp. 128–145,
1999.

[25] E. Licéaga-Castrol, “A liouvillian systems approach for the trajectory planning-based control
of helicopter models,” Int. J. Robust Nonlinear Contrul, vol. 10, pp. 301–320, 2000.

[26] I. A. Raptis and K. P. Valavanis, Linear and nonlinear control of small-scale unmanned helicopters.
Springer Science & Business Media, 2010, vol. 45.

[27] 3D Robotics, “Ardupilot apm2.6,” http://3drobotics.com/kb/apm-2-6/, accessed: 2015-9-24.

[28] CAPTRON Electronic GmbH, “Bavarian demon datasheet, 3x/3xs se-
ries,” http://www.bavariandemon.com/fileadmin/user_upload/downloads/
bavarianDEMON-Instructions-3SX-3X_V6.1.pdf, accessed: 2015-9-24.

[29] Futaba Inc., “Fsu2 instruction manual,” http://manuals.hobbico.com/fut/fsu2-manual.pdf,
accessed: 2015-10-11.

[30] Fardin Abdi, “Flight demo video,” https://youtu.be/tHcJUvBKd8Q.

22

http://3drobotics.com/kb/apm-2-6/
http://www.bavariandemon.com/fileadmin/user_upload/downloads/bavarianDEMON-Instructions-3SX-3X_V6.1.pdf
http://www.bavariandemon.com/fileadmin/user_upload/downloads/bavarianDEMON-Instructions-3SX-3X_V6.1.pdf
http://manuals.hobbico.com/fut/fsu2-manual.pdf
https://youtu.be/tHcJUvBKd8Q

	Introduction
	Related Work
	System Constraints
	Background on Simplex Architecture
	Methodology
	Schedulability Analysis with Resets
	Safety Controller (SC) Design
	Real-Time Reachability Module (RTR)
	Switching Conditions for Hard Constraints
	Switching Conditions for Overrun Constraints
	RTR Module Implementation
	Reach Function

	An Alternative Architecture
	Evaluation
	Model Development and SC Design
	Model Dynamics
	Model Linearization
	Safety and Overrun Constraints
	SC Design
	Model Validation and Identification

	Restarting in Action
	Evaluation with the Simulated Model
	Progress Analysis
	Stabilizable Region Comparison
	Modified RTR with Overrun Constraints

	Conclusions

