Achieving System-level Fault-tolerance
with Controlled Resets

Fardin Abdi, Renato Mancuso, Rohan Tabish, Marco Caccamo Department of Computer Science
University of Illinois at Urbana-Champaign
{abditag2, rmancus2, rtabish, mcaccamo} @illinois.edu

Abstract

Embedded systems in safety-critical environments are continuously required to deliver more performance and functionality, leading
to increased complexity and connectivity. Despite the fast growing complexity, guaranteeing safety is of the utmost importance.
Nonetheless, platform-wide software verification is often expensive. Therefore, design methods that enable utilization of components
such as real-time operating systems (RTOS), without requiring their correctness to guarantee safety, is necessary.

In this paper, we propose a design approach to deploy safe-by-design embedded systems. To attain this goal, we rely on a small
core of verified software to detect faults in applications and RTOS and recover from them while ensuring that timing constraints
of safety-critical tasks are always satisfied. Faults are detected by monitoring the state of the physical plant and application timing.
Fault-recovery is achieved via full platform restart and software reload, enabled by the short restart time of embedded systems.
Schedulability analysis is used to ensure that the timing constraints of critical plant control tasks are always satisfied in spite of faults
and consequent restarts. We derive schedulability results for four restart-tolerant task models. We use a simulator to evaluate and
compare the performance of the considered scheduling models. Finally, we implement a controller for a 3 degree of freedom (3DOF)
helicopter using one of such models on real hardware and demonstrate that the system remains safe despite faults in the RTOS and
applications.

I. INTRODUCTION

Embedded controllers with smart capabilities are being increasingly used to implement safety-critical cyber-physical systems
(SC-CPS). In fact, modern medical devices, avionic and automotive systems, to name a few, are required to deliver increasingly
high performance without trading off in robustness and assurance. Unfortunately, satisfying the increasing demand for smart
capabilities and high performance means deploying increasingly complex systems. Even seemingly simple embedded control
systems often contain a multitasking real-time kernel, support networking, utilize open source libraries [1], and a number of
specialized hardware components (GPUs, DSPs, DMAs, efc.). As systems increase in complexity, however, the cost of formally
verifying their correctness can easily explode.

Testing alone is insufficient to guarantee the correctness of a (complex) systems, and unverified software may violate system
safety in multiple ways, for instance: (i) the control application may contain unsafe logic that guides the system towards hazardous
states; (ii) the logic may be correct but incorrectly implemented thereby creating unsafe commands at runtime (application-level
faults); (iii) even with logically safe, correctly implemented control applications, faults in underlying software layers (e.g. RTOS
and device drivers) can prevent the correct execution of the controller and jeopardize system safety (system-level faults). Due to
the limited feasibility and high cost of platform-wide formal verification, we take a different approach. Specifically, we propose
a software/hardware co-design methodology to deploy SC-CPS that (i) provide strong safety guarantees; and (ii) can utilize
unverified software components to implement complex safety-critical functionalities.

Our approach relies on a key observation: by performing careful boot-sequence optimization, many embedded platforms and
RTOS utilized in automotive industry, avionics, and manufacturing can be entirely restarted within a very short period of time.
Restarting a computing system and reloading a fresh image of all the software (i.e., RTOS, and applications) from a read-only
source appears to be an effective approach to recover from unexpected faults. Thus, we propose the following: as soon as a fault
that disrupts the execution of critical components is detected, the entire system is restarted. After a restart, all the safety-critical
applications that were impacted by the restart are re-executed. If restart and re-execution of critical tasks can be performed fast
enough, i.e. such that timing constraints are always met is spite of task re-executions, the physical system will remain oblivious
to and will not be impacted by the occurrence of faults.

The effectiveness of the proposed restart-based recovery relies on timely detection of faults to trigger a restart. Since detecting
logical faults in complex control applications can be challenging, we utilize Simplex Architecture [2]-[4] to construct control
software. Under Simplex, safety of the system relies solely on correct execution of safety controller tasks. From a scheduling
perspective, safety is guaranteed if critical tasks have enough CPU cycles to re-execute and finish before their deadlines in spite
of restarts. In this paper, we analyze the conditions for a periodic task set to be schedulable in the presence of restarts and
re-executions. We assume that when a restart occurs, the task instance executing on the CPU and any of the tasks that were
preempted before their completion will need to re-execute after the restart. In particular, we make the following contributions:

o We propose a Simplex Architecture that can be recovered via restarts and implemented on a single processing unit;

o We derive the response time analysis under fixed-priority with fully preemptive and fully non-preemptive disciplines in
presence of restart-based recovery and discuss pros and cons of each one;

o We propose response time analysis of fixed-priority scheduling in presence of restarts for tasks with preemption thresholds [5]
and non-preemptive ending intervals [6] to improve feasibility of task sets;

o To evaluate the practicality of our restart-based recovery, we perform a proof-of-concept implementation on a 3 degree of
freedom (3DOF) helicopter and test the system against various types of system and application faults.



The rest of this paper is organized in the following order. Section II provides a background on Simplex Architecture and
reviews the most relevant literature. In Section III, the core assumptions on the fault model, as well as the recovery approach is
discussed. Section IV explains our fault-detection using HW watchdogs. In Section V, the feasibility analysis of taskset under
preemptive and non-preemptive schemes are provided. In Section VI, we analyze two hybrid scheduling disciplines that improve
feasibility of task sets in the presence of restarts. In Section VII, we explain various types of faults tested on our proof-of-concept
implementation. Section VIII concludes the paper.

II. BACKGROUND & RELATED WORK
A. Simplex Architecture

Simplex architecture was initially proposed in [2]-[4] to provide formal safety guarantees using only a small verified core.
Under Simplex Architecture, each controlled component requires a safety controller (SC), a complex controller (CC) and a decision
module (DM). SC is simple and formally verified (i.e. it has safe logic and correct implementation) such that it can always stabilize
the physical plant within a safety region. CC, on the other hand, is unverified (i.e. it may contain unsafe logic or implementation
bugs) and high-performance and drives the system towards the mission set points. DM includes a switching logic that attempts
to use CC as much as possible to increase the progress of the system towards the goal. However, when CC does not satisfy the
safety requirements, DM chooses the output from SC for actuation. A system that adheres to this architecture is guaranteed to
remain safe as long as SC and DM execute correctly and complete within their deadlines.

Most of the previous work on Simplex Architecture [2]-[4], [7], [8] has focused on design of the switching logic of DM or
the SC, assuming that the underlying RTOS, libraries and middle-ware will correctly execute the SC and DM. Often however,
these underlying software layers are unverified and may contain bugs. Unfortunately, Simplex-based systems are note guaranteed
to behave correctly in presence of system-level faults.

System-Level Simplex and its variants [9]-[11] run SC and DM as bare-metal applications on an isolated, dedicated hardware
unit. By doing so, the critical components are protected from the faults in the OS or middle-ware of the complex subsystem.
However, exercising this design on most multi-core platforms is challenging. The majority of commercial multi-core platforms
are not designed to achieve strong inter-core fault isolation due to the high-degree of hardware resource sharing. For instance, a
fault occurring in a core with the highest privilege level may compromise power and clock configuration of the entire platform.
To achieve full isolation and independence, one has to utilize two separate boards/systems.

Our design enables the system to safely tolerate and recover from application-level and system-level faults that cause silent
failures in SC and DM without utilizing additional hardware.

B. Restarting

The notion of restarting as a means of recovery from faults and improving system availability was previously studied in
the literature. Most of the previous work, however, target traditional non-safety-critical computing systems such as servers and
switches. Authors in [12] introduce recursively restartable systems as a design paradigm for highly available systems and uses
a combination of revival and rejuvenation techniques. Earlier literature [13]-[15] illustrates the concept of micro-reboot which
consists of having fine-grain rebootable components and trying to restart them from the smallest component to the biggest one in
the presence of faults. The works in [16]-[18] focus on failure and fault modeling and try to find an optimal rejuvenation strategy
for various systems.

Additionally, System-Level Simplex [9] and Reset-Based Recovery [10] also propose that the complex subsystem can be restarted
upon the occurrence of faults. Restarting is possible, because the safety subsystem runs on a dedicated processing unit and is not
impacted by the restarts in the complex subsystem.

C. Scheduling

One way to achieve fault-tolerance in real-time systems is to use time redundancy. Using time redundancy, whenever a fault
leads to an error, and the error is detected, the faulty task is either re-executed or a different logic (recovery block) is executed to
recover from the error. It is necessary that such recovery strategy does not cause any deadline misses in the task set. Fault tolerant
scheduling has been extensively studied in the literature. Hereby we briefly survey those works that are more closely related.

A feasibility test for single fault-tolerant schedulability fashion under EDF is proposed in [19]. A feasibility check algorithm
under multiple faults, assuming earliest deadline first scheduling (EDF) for aperiodic preemptive tasks is proposed in [20]. An
exact schedulability tests using checkpointing for task sets under fully preemptive model and transient fault that affects one task
is proposed in [21]. This analysis is further extended in [22] for the case of multiple faults as well as for the case where the
priority of a critical task’s recovery block is increased.

In [23], authors propose the exact feasibility test for fixed-priority scheduling of a periodic task set to tolerate multiple transient
faults on uniprocessor. In [24] an approach is presented to schedule under fixed priority-driven preemptive scheduling at least one
of the two versions of the task; simple version with reliable timing or complex version with potentially faulty.

Authors in [25] consider a similar fault model to ours, where the recovery action is to re-execute all the partially executed
tasks at the instant of the fault detection i.e., executing task and all the preempted tasks. This work only considers preemptive
task sets under rate monotonic and shows that single faults with a minimum inter-arrival time of largest period in the task set can
be recovered if the processor utilization is less than or equal to 50%.



In [26], the authors investigate the feasibility of task sets under fault bursts. Similarly to our work, the recovery action is
to re-execute the faulty job along with all the partially completed (preempted) jobs at the time of fault detection. The analysis
is limited to preemptive scheduling. The work in [27] addresses the problem of fault-tolerance feasibility under error bursts by
performing processor speed-up to re-execute the impacted tasks. The recovery strategy in this work shares a number of similarities
with our work.

Most of these works are only applicable to transient faults (e.g., faults that occur due to radiation or short-lived HW malfunctions)
that impact the task and do not consider faults affecting the underlying system. Additionally, most of the works assume that online
fault detection or acceptance test exists. While this assumption is valid for detecting many transient faults, detecting complex
system-level faults in a reliable manner is non-trivial.

Additionally, to the best of our knowledge, our paper is the first one to provide the sufficient feasibility condition in the presence
of faults under the preemption threshold model and task sets with non-preemptive ending intervals.

III. SYSTEM MODEL AND ASSUMPTIONS

In this paper, the assumption is that a fault and a consequent restart can take place at any point in time throughout execution.
Hence, the system needs to be designed to safely tolerate restarts at any point in time. In this section we formalize the considered
system and task model, and discuss the assumptions under which our methodology is applicable.

A. Sporadic and Periodic Task

We consider a task set 7 composed of n sporadic tasks 7 ... T, executed on a uniprocessor under fixed priority scheduling.
Each task 7; is assigned a priority level 7;. We will implicitly index tasks in decreasing priority order, i.e.,, 7; has higher priority
than 7, if ¢ < k. Each sporadic task T; is characterized by three positive real values; a worst-case execution time (WCET) C}, a
deadline D; (relative to the release time), and a minimum inter-arrival time 73, with C; < D; and C; < T;. Sporadic tasks may
be released at any time, as long as two successive arrival times are separated in time by at least 7; time units. Each instance of
a sporadic task is called job and 7;j denotes the kth job of task 7;. Once released, each job needs to execute for at most C;
units of time before its deadline D;. Periodic task can be considered a special case of sporadic task, where the inter-arrival time
is constant and always equal to the minimum inter-arrival time. In this paper, for simplicity purpose, we assume D; = T;. This
indicates that each job has to finish before the next instance of the task is released.

Moreover, hp(m;) and Ip(m;) refer to the set of tasks with higher or lower priority than m; i.e., hp(m;) = {7; | m; < m;} and

Ip(mi) = {7 | m >m;}.

B. Critical and Non-Critical Workload

In this work, we utilize Simplex Architecture for implementation of each the controller software. As a result, three periodic
tasks are associated with every controlled component'; a SC task, a CC task, and a DM task. In typical designs, the three tasks
that compose the same controller have the same period, deadline, and release time. SC tasks are the only ones whose timely
execution is necessary for the safety of the physical plant. Therefore, out of the three tasks, SC must execute first and write its
output to the actuator command buffer. On the other hand, DM needs to execute last, after the output of CC is available, to decide
if it is safe to replace the SC command already in the actuator buffer. Hence, the priorities of the controller tasks need to be in
the following order: #(DM) < n(CC) < w(SC).

The set of all the SC tasks on the system is called critical workload. The set of all the CC and DM tasks is referred as
non-critical workload. Safety is guaranteed if and only if all the critical tasks complete before their deadlines. Whereas, execution
of non-critical tasks is not crucial for safety; these tasks are said to be mission-critical but not safety-critical.

Additionally, we assume that the first n. tasks of 7 are critical. Notice that with this indexing strategy, any critical task has a
higher priority than any non-critical task.

C. Fault Model

In this paper, we consider two types of fault for the system; application-level faults and system-level faults. We make the
following assumptions about the faults that our system safely handles:
o Application faults may only occur in the unverified workload (i.e., all the application-level processes on the system except
SC and DM tasks).
e SC and DM tasks are independently verified and fault-free. They might, however, fail silently (no output is generated) due
to faults in software layers or other applications on which they depend.
« In this paper we only consider system- and application-level faults that cause SC and DM tasks to fail silently but do not
change their logic or alter their output.
« Faults do not alter sensor readings.
e We indicate with 7, the minimum inter-arrival time of the faults and the consequent restarts. We assume that the
minimum inter-arrival time of restarts is larger than the least common multiple (hyper-period) of the critical tasks, i.e.
T, > LCM{Ty | k < n.}%
We further assume that task instances (jobs) of SC and CC tasks are independent and individually perform sampling, computation
and output of actuation commands. As such, a job remains unaffected by system restarts as long as it has completed or it has not
started its execution before a restart occurs.

!Usually multiple physical unit/components are controlled via one processing unit.
2For a well-tested system, faults that require restarts are typically considered to be rare events [28], [29].
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Fig. 1: Example of fully preemptive system with 3 tasks 71 = (1, 3); 72 = (2, 8); 73 = (4, 22), and restart at t = 10 — e (C» = 0). The taskset
is schedulable without restarts, however, restart and task re-execution causes a deadline miss at ¢t = 22.

D. Recovery Model

The recovery action we assume in this paper is to restart the entire system, reload all the software (RTOS and applications)
from a read-only storage unit, and re-execute all the partially executed jobs (i.e., preempted jobs and the job running on CPU
at the restart moment). Priority of re-execution of a job is the same as the priority of the original job at the time of restart.
Thus, during the re-execution of a lower priority job, if a higher priority task arrives, the higher priority task will preempt the
re-executed instance of the lower priority task. In this paper, C) refers to the time required to restart the system and reload and
run the software (RTOS and applications) from a read-only image. Figure 1 depicts how restart and task re-execution affect the
scheduling of 3 real-time tasks (71, 72, and7s). When the restart happens at ¢ = 10 — €, 7; was still running. Moreover, 7, and 73
were preempted at time ¢ = 9 and ¢ = 8, respectively. Hence all the three task will need to be re-executed after the restart.

System restart is triggered only after a fault is detected. We utilize a reliable timing based fault detection mechanism that uses
hardware watchdog (WD) timers to detect when instances of critical tasks have not finished before their worst-case response time.
These mechanisms are further elaborated in Section IV.

E. Scheduler State Preservation

We assume that after a restart it is possible to know what tasks were preempted/executing at the time when a restart occurred.
This can be performed in two ways: (i) by preserving minimal information about the state of the scheduler across restarts; or by
(i1) relying on a monotonic clock source to determine absolute timing after a reset and use the task parameter to select a safe set
of tasks for re-execution. In the first case, if scheduling algorithms with job-level static priority are used, the state of the scheduler
needs to be saved only at the boundaries of tasks’ activation and completion. This can be achieved by saving the schedule status
to nonvolatile memory at each job termination point. The fixed overhead of writing can be incorporated in the task’s WCET.

F. RBR-Feasibility

A task set 7 is said to be feasible under restart based recovery (RBR-Feasible) if the following two conditions are satisfied;
(i) there exists a schedule such that all jobs of all the critical tasks, or their potential re-executions, can complete successfully
before their respective deadlines, even in the presence of a system-wide restart, occurring at any arbitrary time during execution.
(ii) All jobs, including instances of non-critical tasks, can complete before their deadlines when no restart is performed.

IV. FAULT DETECTION

For a system designed based on Simplex Architecture, safety depends on timely execution of SC tasks which are part of the
critical workload of the task set (i.e., tasks with ¢ < n.). If faults prevent any of these critical tasks from finishing before the
deadline, the system would be at risk. A successful fault-detection approach must be able to detect the fault before the deadline is
missed and trigger the recovery procedure. Another challenge to overcome is to ensure that there is enough time after triggering
a recovery procedure, such that the re-execution of the jobs can complete before their deadlines.

In this section we discuss a fault detection approach to detect faults before the deadline using a hardware watchdog timer.
Later, in section V, we provide the conditions to ensure timing requirements of the critical tasks in presence of restarts.

A. Monitoring with HW WD timers

To explain the detection mechanism, we need to define the ideal worst-case response time of a critical task, as the worst-case
response time of the task when there are no restarts (and no re-executions) in the system. In other words, it is the longest time
elapsed between the arrival time (when task is ready to execute) to the completion time when no restarts occur, over all instances



of the task. We use R; to denote the ideal worst-case response time of 7;. In Section V, we explain how to obtain R; for the
tasks in a given task set.

If no faults occur in the system, every instance of task 7; is expected to finish its execution within at most R; time units after
the arrival time of the job. This can be checked in runtime through a monitoring task that checks the list of active tasks at time
instants kT; + R, to ensure that 7; has terminated and is not in the list of ready tasks. Otherwise, it restarts the system. In each
invocation of the monitoring task, following steps are performed.

1) Assuming that j is the task under monitoring, check if 7; has completed. If 7; has not terminated, do nothing. As a result,
the WD timer will expire and system will restart.

2) If 7; has terminated, set the next wake up time of the task to ;¢ and set the WD expiration time to ¢ — tyex + € Where ¢ is
the current time, € is a small positive value and

thexe = 1IN <Lt/TiJTi + i + R) : n

1S5Cn

where ¢; denotes the phase of task 7; that is, the release time of its first instance.

Notice that this simple solution utilizes only one WD timer, and handles all the silent failures. The advantage of using hardware
WD timers is that if any faults in the OS or other applications, prevent the time monitor task from execution, the WD which is
already set, will expire and restart the system.

V. RBR-FEASIBILITY ANALYSIS

As mentioned in Section IV, re-execution of jobs impacted by a restart must not cause any other job to miss a deadline. Also,
re-executed jobs need to meet their deadlines as well. The goal of this section is to present a set of sufficient conditions to reason
about the feasibility of a given task set 7 in presence of restarts (RBR-feasibility). In particular, in Sections V-A and V-B, we
present a methodology that provides a sufficient condition for exact RBR-Feasibility analysis of preemptive and non-preemptive
task sets.

Definition: Length of level-i preemption chain at time t is defined as sum of the executed portions of all the tasks that are
in the preempted or running state, and have a priority greater than or equal to m; at t. Longest level-i preemption chain is the
preemption chain that has the longest length over all the possible level-i preemption chains.

For instance, consider a fully preemptive task set with four tasks; Cy =1, Ty =5, Cy =3, T, =10, C5 =2, T3 =12, Cy =4,
T3 =15, and my < w3 < me < 1. For this task set, the longest level-3 and level-4 preemption chains are 6 and 10, respectively.

A. Fully Preemptive Task Set

Under fully preemptive scheme, as soon as a higher priority task is ready, it preempts any lower priority tasks running on the
processor. To calculate the worst-case response time of task 7;, we have to consider the case where the restart incurs the longest
delay on finishing time of the job. For a fully preemptive task set, this occurs when every task 74 for k € {2,...,4} is preempted
immediately prior to its completion by 7;,_; and system restarts right before the completion of 7;. In other words, when tasks
71 to 7; form the longest level-i preemption chain. An example of this case is depicted in Figure 1. In this case, the restart and
consequent re-execution causes a deadline miss at ¢ = 22. The example uses only integer numbers for task parameters, hence
tasks can be preempted only up to 1 unit of time before their completion. In the rest of the paper, we discuss our result assuming
that tasks’ WCETs are real numbers.

Theorem 1 provides RBR-feasibility conditions for a fully preemptive task set 7, under fixed priority scheduling.

Theorem 1. A set of preemptive sporadic (periodic) tasks ‘T is RBR-Feasible under fixed priority algorithm if the response time

R% of )each (ta)sk T; satisfies the condition: Y1; € T,R; < T;. R; is obtained for the smallest value of k for which we have
k+1 k
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)
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where the restart overhead OF on response time is
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Proof. First, note that Equation 2 without the overhead term OF, corresponds to the classic response time of a task under fully
preemptive fixed priority scheduling [30]. The additional overhead term represents the worst-case interference on the task instance
under analysis introduced by restart time and the re-execution of the preempted tasks. We need to show that the overhead term
can be computed using Equation 3. Consider the scenario in which every task 74 is preempted by 7, after executing for J;
time units where k € {2,...,i}. And, a restart occurs after 7, executed for §; time units. Due to the restart, all the tasks have to
re-execute and the earliest time 7; can finish its execution is C, + d; + ... + 1 + C; + ... + Cy. Hence, it is obvious that the later
each preemption or the restart in 7y occurs, the more delay it creates for 7;. Once a task has completed, it no longer needs to
be re-executed. Therefore, the maximum delay of each task is felt immediately prior to the task’s completion instant. Thus, the



overhead is maximized when each 7 is preempted by 7,1 for k € {2,..,4} and restart occurs immediately before the end of
T1. O

As seen in this section, the worst-case overhead of restart-based recovery in fully preemptive setting occurs when system restarts
at the end of longest preemption chain. Therefore, to reduce the overhead of restarting, length of the longest preemption chain
must be reduced. In order to reduce this effect we investigate the non-preemptive setting in the following section.

B. Fully Non-Preemptive Task set

Under this model, jobs are not preempted until their execution terminates. At every termination point, the scheduler selects the
task with the highest priority amongst all the ready tasks to execute. The main advantage of non-preemptive task set is that at
most one task instance can be affected by restart at any instant of time.

Authors in [31] showed that in non-preemptive scheduling, the largest response time of a task does not necessarily occur in
the first job after the critical instant. In some cases, the high-priority jobs activated during the non-preemptive execution of 7;’s
first instance are pushed ahead to successive jobs, which then may experience a higher interference. Due to this phenomenon, the
response time analysis for a task cannot be limited to its first job, activated at the critical instant, as done in preemptive scheduling,
but it must be performed for multiple jobs, until the processor finishes executing tasks with priority higher than or equal to ;.
Hence, the response time of a task needs to be computed within the longest Level-i Active Period, defined as follows [32], [33].

Definition: The Level-i Active Period L; is an interval [a, b) such that the amount of processing that still needs to be performed
at time ¢ due to jobs with priority higher than or equal to m;, released strictly before ¢, is positive for all ¢ € (a,b) and null in a
and b. It can be computed using the following iterative relation:

L =B +C+ Y [LV/1)0;+ 0FF 4)
jehp(m:)

Here, O is the maximum overhead of restart on the response time of a task. In the following we describe how to calculate this

value. L; is the smallest value for which Lz(-Q) = qu_l). This indicates that the response time of task 7; must be computed for
all jobs 7, ;, with k € [1, K;] where K; = [L;/T;].

Theorem 2 describes the sufficient conditions under which a fault and the subsequent restart do not compromise the timely
execution of the critical workload under fully non-preemptive scheduling.

Theorem 2. A set of non-preemptive sporadic (periodic) tasks is RBR-feasible under fixed-priority if the response time R; of
each task T;, calculated through following relation, satisfies the condition: ¥; € T; R; < T;.

- Fip— (k—1)T, 5
R kem[f})%]{ g ( )T} (5)

where I 1 is the finishing time of job T given by
Fir=Sir+Ci (6)

Here, S; 1, is the start time of job T 1, obtained for the smallest value that satisfies Sﬁ:l) = quk) in the following relation

S%
sE =g+ Y ({T’“J + 1) Cj+ O %)

Tj€hp(m;) J

In Equation 7, term B; is the blocking from low priority tasks and is calculated as B; = max, cip(r,) {C;}. The term O]
represents the overhead on task execution introduced by restarts and is calculated as follows:

{ C,+maz {{C; | j € p(m)}UC,} i <ng
0
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Proof. Equation 7 and 6, without the restart overhead term (’)?p , are proposed in [32], [33] to calculate the worst-case start time
and response time of a task under non-preemptive setting.

We need to show that the overhead term can be computed using Equation 8. Under non-preemptive discipline, restart only
impacts a single task executing on the CPU at the instant of restart. There are two possible scenarios that may result in the
worst-case restart delay on finish time of task 7;. First, when 7; is waiting for the higher priority tasks to finish their execution, a
restart can occur during the execution of one of the higher priority tasks 7; and delay the start time 7; by C,. + C}. Alternatively,
a restart can occur infinitesimal time prior to the completion of 7; and cause an overhead of C, + C;. Hence, the worst-case
delay due to a restart is caused by the task with the longest execution time among the task itself and the tasks with higher
priority (Equation 8). The restart overhead is not included in the response-time of non-critical tasks (O;” = 0 for i > n.). [

Unfortunately, under non-preemptive scheduling, blocking time due to low priority tasks, may cause higher priority tasks with
short deadlines to be non-schedulable. As a result, when preemptions are disabled, there exist task sets with arbitrary low utilization
that despite having the lowest restart overhead, are not RBR-Feasible. Figure 2 uses the same task parameters as in Figure 1. The
plot shows that the considered task system is not schedulable under fully non-preemptive scheduling when a restart is triggered
att=95—e.
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Fig. 2: Example of fully non-preemptive system with 3 tasks 7 = (1, 3); 72 = (2,8); 73 = (4,22), and restart at t = 5 — € (C» = 0). Restart
and task re-execution causes a deadline miss at t = 9.

VI. LIMITED PREEMPTIONS

In the previous section, we analyzed the RBR-Feasibility of task sets under fully preemptive and fully non-preemptive scheduling.
Under full preemption, restarts can cause a significant overhead because the longest preemption chain can contains all the tasks.
On the other hand, under non-preemptive scheduling, the restart overhead is minimum. However, due to additional blocking on
higher priority tasks, some task sets, even with low utilization, are not schedulable.

In this section we discuss two alternative models with limited preemption. Limited preemption models are suitable for restart-
based recovery since they enable the necessary preemptions for the schedulability of the task set, but avoid many unnecessary
preemptions that occur in fully preemptive scheduling. Consequently, they induce lower restarting overhead and exhibit higher
schedulability.

A. Preemptive tasks with Non-Preemptive Ending

As seen in the previous sections, reducing the number and length of preempted tasks in the longest preemption chain, can reduce
the overhead of restarting and increase the RBR-Feasibility of task sets. On the other hand, preventing preemptions entirely is not
desirable since it can impact feasibility of the high priority tasks with short deadlines. As a result, we consider a hybrid preemption
model in which, a job once executed for longer than C; — ; time units, switches to non-preemptive mode and continues to
execute until its termination point. Such a model allows a job that has mostly completed to terminate, instead of being preempted
by a higher priority task. @; is called the size of non-preemptive ending interval of 7; and @Q); < C;. The model we utilize in this
section, is a special case of the model proposed in [6] which aims to decrease the preemption overhead due to context switch in
real-time operating systems. In Figure 3, we consider a task set with the same parameters as in Figure 1, where in addition task
73 has a non-preemptive region of length Q3 = 1. The preemption chain that caused the system in Figure 1 to be non-schedulable
cannot occur and the instance of the task becomes schedulable under restarts. With the same setup, Figure 4 considers the case
when a reset occurs at t =9 —e.

1) RBR-Feasibility Analysis: Theorem 3 provides the RBR-feasibility conditions of a task-set with non-preemptive ending
intervals. In this theorem, S;; represents the worst case start time of the non-preemptive region of the re-executed instance of
job 7; k. Similarly, F;  is used to represent the worst-case finish time. The arrival time of instance k of task 7; x is (k — 1)T;.

Theorem 3. A set of sporadic (periodic) tasks T with non-preemptive ending regions of length @Q);, is RBR-Feasible under a
fixed priority algorithm if the worst-case response time R; of each task T;, calculated from Equation 9, satisfies the condition:
V1; € T, R, <T;.

R; = kglua;é]{sz - (k=1)T;} &)
where
Fip=Six+Q; (10

and S, i is obtained for the smallest value of q for which we have Si(’qkﬂ) = Sg?k) in the following

Sg?;j” =B+ (k—-1)Ci + Ci — Qs
549
+ Y ({TJ + 1) C;+ 0O (11)
7 €hp(Ts) J
Here, the term B; is the blocking from low priority tasks and is calculated by
B; = max ){Qk}. (12)

Tr E€lp(m;
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Fig. 3: Example of system with 3 tasks 71 = (1,3); Ty = (2,8);73 = (4, 22), where 73 has a non-preemptive region of size Q3 = 1. Restart
occurs at t = 7 — € (C, = 0). The task set is schedulable with restarts.

O s the maximum overhead of the restart on the response time and is calculated as follows:

Cr + WCWE(i) i <.
0 1> Ne

orre — (13)

where WCWE (i) is the worst-case amount of the execution that may be wasted due to the restarts. It is given by the following
where WCWE (1) = Cy and

WCWE (i) = C; + max <O, WCWE(i — 1) — Ql') (14)

K; in Equation 9 can be computed from Equation 4 by using O;" instead of O;".

Proof. Authors in [5] show that the worst-case response time of task 7; is the maximum difference between the worst case finish
time and the arrival time of the jobs that arrive within the level-i active period (Equation 9).

Hence, we must compute the worst-case finish time of job 7;; in the presence of restarts. When a restart occurs during the
execution of 7; , or while it is in preempted state, 7; ;, needs to re-execute. Therefore, the finish time of the 7; 5 is when the
re-executed instance completes. As a result, to obtain the worst-case finish time of 7; j, we calculate the response time of each
instance when a restart with longest overhead has impacted that instance. We break down the worst-case finish time of 7; ; into
two intervals: the worst-case start time of the non-preemptive region of the re-executed job and the length of the non-preemptive
region, (); (Equation 10). S; ; in Equation 10, is the worst-case start time of non-preemptive region of job 7;; which can be
iteratively obtained from Equation 11. Equation 11 is an extension of the start time computation from [33]. In the presence of
non-preemptive regions, an additional blocking factor B; must be considered for each task 7;, equal to the longest non-preemptive
region of the lower priority tasks. Therefore, the maximum blocking time that 7; may experience is B; = max,, eip(r,) {Q;}. B
is added to the worst-case start time of the task in Equation 11.

For a task 7; with the non-preemptive region of size ();, there are two cases that may lead to the worst-case wasted time. First
case is when the system restarts immediately prior to the completion of 7;, in which case the wasted time is C;. Second case
occurs when 7; is preempted immediately before the non-preemptive region begins (i.e., at C; — @);) by the higher priority task
T;—1. In this case, the wasted execution is C; — @; plus the maximum amount of the execution of the higher priority tasks that
may be wasted due to the restarts (i.e., WCWE(i — 1)). The worst-case wasted execution is the maximum of these two values
i.e., WCWE (i) = max(C;, C; — Q; + WCWE(i — 1)) = C; + max(0, WCWE (i — 1) — Q;). Similarly, WCWE (i — 1) can be
computed recursively. 0

2) Optimal Size of Non-Preemptive Regions: RBR-Feasibility of a taskset depends on the choice of ;s for the tasks. In this
section, we present an approach to determine the size of non-preemptive regions (); for the tasks to maximize the RBR-Feasibility
of the task set.

First, we introduce the the notion of blocking tolerance of a task (3;. B; is the maximum time units that task 7; may be blocked
by the lower priority tasks, while it can still meet its deadline. Algorithm 1, uses binary search and the response time analysis of
task (from Theorem 3) to find 3; for a task 7;.

In Algorithm 1, R; B,—midaie 1S computed as described in Theorem 3 (Equation 9), where instead of using the B; from
Equation 12, the blocking time is set to the value of middle.

Note that, if Algorithm 1 cannot find a 3; for task 7;, this task is not schedulable at all. This indicates that there is not any
selection of ();s that would make 7" RBR-Feasible.

Given that task 7y has the highest priority, it may not be preempted by any other task; hence we set )1 = C;. The next theorem
shows how to drive optimal (Q; for the rest of the tasks in 7. The results are optimal, meaning that if there is at least one set of
Q;s under which 7 is RBR-Feasible, it will find them.
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Fig. 4: Example of system with 3 tasks 71 = (1,3); Ty = (2,8);73 = (4, 22), where 73 has a non-preemptive region of size Q3 = 1. Restart
occurs at t = 9 — € (C, = 0). The task set is schedulable with restarts.

Algorithm 1: Binary Search for Finding 3;

FindBlockingTolerance (7:, T, Q1,..., Qi)
start = 0; end = T; /* Initialize the interval */
if R;(start) > T; then return 7; Not Schedulable;
while end - start > € do

middle = (start + end)/2

if R; B,—midate > T3 then end = middle ;

else start = middle
end

return 3; = start;

Theorem 4. The optimal set of non-preemptive interval Q;s of tasks T; for 2 < i <n is given by:
Qi = min{min{B; | j € hp(m;)},C;} (15)
assuming that B; > 0 for j € hp(m;).

Proof. Increasing the length of @; for a task reduces the response time in two ways. First, from Equation 11, increasing @;
reduces the start time of the job .S;; which reduces the finish time and consequently the response time of 7;. Second, from
Equation 14, increasing (); reduces the restart overhead 0.7 on the task and lower priority tasks which in turn reduces the
response time. Thus (); may increase as much as possible up to the worst-case execution time C;; @); < C;. However, the choice
of ; must not make any of the higher priority tasks unschedulable. As a result, (); must be smaller than the smallest blocking
tolerance of all the tasks with higher priority than 7;; Q; < min{f;|j € hp(m;)}. Combining these two conditions results in the
relation of Equation 15. O

B. Preemption Thresholds

In the previous section, we discussed non-preemptive endings as a way to reduce the length of the longest preemption chain
and decrease the overhead of restarts. In this section, we discuss an alternative approach to reduce the number of tasks in the
longest preemption chain and thus reduce the overhead of restart-based recovery.

To achieve this goal, we use the notion of preemption thresholds which has been proposed in [5]. According to this model,
each task 7; is assigned a nominal priority 7; and a preemption threshold \; > 7;. In this case, 7; can be preempted by 77, only
if 7, > A;. At activation time, priority of 7; is set to the nominal value 7;. The nominal priority is maintained as long as the
task is kept in the ready queue. During this interval, the execution of 7; can be delayed by all tasks with priority 7, > m;, and
by at most one lower priority task with threshold )\; > ;. When all such tasks complete, 7; is dispatched for execution, and its
priority is raised to \;. During execution, 7; can be preempted by tasks with priority m;, > A;. When 7; is preempted, its priority
is kept at \;.

Restarts may increase the response time of 7; ; in one of two ways; A restart may occur after the arrival of the job but before
it has started, delaying its start time S; ;. Alternatively, the system can be restarted after the job has started. We use O 5 to
denote the worst-case overhead of a restart that occurs before the start time of a job in task sets with preemption thresholds. And,
or b s used to represent the worst-case overhead of a restart that occurs after the start time of a job in task sets with preemption
thresholds.

In Figure 5, we consider a task set with the same parameters as in Figure 1 where in addition 75 and 73 have a preemption
threshold equal to Ay = 1 and A3 = 2, respectively. This assignment is effective to prevent a long preemption chain, and the jobs
do not miss their deadline when the restart occurs at t = 7 — €. Notice that, the task set is still not RBR-Feasible since if the
restart occurs at ¢ = 9 — ¢, some job will miss the deadline, as shown in Figure 6.
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Fig. 5: Example of system with 3 tasks 71 = (1,3);72 = (2, 8); 73 = (4,22), where 72 and 73 have a preemption threshold of A2 = 1 and
A3 = 2, respectively. Restart occurs at t = 7 — € (C,, = 0). In this case, the task set remains schedulable.
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Fig. 6: Example of system with 3 tasks 71 = (1,3);72 = (2,8); 73 = (4,22), where 72 and 73 have a preemption threshold of A2 = 1 and
A3 = 2, respectively. Restart occurs at ¢ = 9 — € (C, = 0). The task set is not schedulable.

Theorem 5. For a task set with preemption thresholds under fixed priority, the worst-case overhead of a restart that occurs after
the start of the job T,y is Oft’f = C, + WCWE (i) where

WCWE (i) = C; + max{WCWC(j) | 7; € hp(\;)} (16)
Here, WCWC(1) = C4.

Proof. After a job 7;j, starts, its priority is raised to A;. In this case, the restart will create the worst-case overhead if it occurs
at the end of longest preemption chain that includes 7; and any subset of the tasks with 7, > A;. Equation 16 uses a recursive
relation to calculate the length of longest preemption chain consisting of 7; and all the tasks with m;, > A;. O

Theorem 6. For a task set with preemption thresholds under fixed priority, a restart occurring before the start time of a job T; i,
can cause the worst-case overhead of

OPY* = Cp + max{WCWE(j) | 7; € hp(m;)} (17)
where WCWE (j) can be computed from Equation 16.

Proof. Start time of a task can be delayed by a restart impacting any of the tasks with priority higher than m;. Equation 17
recursively finds the longest possible preemption chain consisting of any subset of tasks with 7, > ;. O

Due to the assumption of one fault per hyper-period, each job may be impacted by at most one of OF B or oY **_ but not
both at the same time. Hence, we compute the finish time of the task once assuming that the restart occurs before the start time
ie, OF /' — 0, and another time assuming it occurs after the start time i.e., OP"* = (. Finish time in these two cases is referred
respectively by F’, (restart before the start time) and Fi{ ,. (restart after the start time).
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We expand the response time analysis of tasks with preemption thresholds from [5], considering the overhead of restarting.
In the following, S; , and F; ;, represent the worst case start time and finish time of job 7; ;. And, the arrival time of 7 is
(k — 1)T;. The worst-case response time of task 7; is given by:

R; = max {max{FiS’mek} — (k- l)TZ} (18)

kell,K;]

Here, K; can be obtained from Equation 4 by using max(O¥ 28 OP"*) instead of O]'’. A task 7; can be blocked only by lower
priority tasks that cannot be preempted by it, that is:

B; = max{Cj | T < T < )\J} (19)
J

To compute finish time, S; ; is computed iteratively using the following equation [5]:

(¢—1)
Si(,qk) =B+ (k—1)Ci+ Z (1 + { z’; J)Cj + Orhs (20)
)

JjEhp(m;

J

Once the job starts executing, only the tasks with higher priority than \; can preempt it. Hence, the F; ;, can be derived from the
following:

Fl(’(;? = Si,k + Ci+

Fla=b S.
Z i,k (1 + i,k Cj + Oft,f (21)
, T; T;
jehp(Xi)

Task set 7 is considered RBR-Feasible if V7; € T, R; < T;.

RBR-Feasibility of a task set depends on the choice of \;s for the tasks. In this paper, we use a genetic algorithm to find a set

of preemption thresholds to achieve RBR-Feasibility of the task-set. Although this algorithm can be further improved to find the
optimal threshold assignments, the proposed genetic algorithm achieves acceptable performance, as we show in Section VII.

VII. EVALUATION AND CASE STUDY

In this section, we compare and evaluate the four fault-tolerant scheduling strategies discussed in this paper. In addition, to
demonstrate the practicality of the proposed restart-based fault tolerance, we implemented a controller on a commercial-off-the-
shelf (COTS) embedded board for a 3DOF helicopter [34] (Figure 7)and empirically validate the practicality of our approach.
We inject faults in the control logic, control application, and the operating system and demonstrate that the system remains safe,
despite the occurrence of faults, and restarts.

A. Proof-Of-Concept Implementation

1) 3DOF helicopter and Controllers: The 3DOF helicopter (displayed in figure 7) is a simplified helicopter model, ideally
suited to test intermediate to advanced control concepts and theories relevant to real world applications of flight dynamics and
control in the tandem rotor helicopters, or any device with similar dynamics [34]. It is equipped with two motors that can generate
force in the upward and downward direction, proportionally to the given actuation voltage. It also has three sensors to measure
elevation, pitch and travel angle as shown in Figure 7.

Fig. 7: 3 Degree of freedom (3DOF) helicopter.

Safety for the 3DOF helicopter is achieved if the propellers do not hit the surface underneath, as shown in Figure 7. The subset
of the state space in which there is no contact between the helicopter and the surface underneath is given by —e — p/3 < 0.3 and
—e+ p/3 < 0.3 where € and p are the elevation and pitch angles of the helicopter. The helicopter is considered safe if it never
exits this region. To design the decision logic and the safety controller, we use the Simplex-based approach proposed in [35]
and the linear model of 3DOF helicopter obtained from the manufacturer manual [34]. We also design a complex controller that
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3DOF Helicopter Fault Injection

Safety
Failure Type Caﬂaelgl:)try App hsci?nu;{; ;evel Sysstienri;t ivel Our Approach' Restarted
(1 processing unit) | (2 processing units) e se iy

No Output App. %4 [%4 No
Maximum Voltage App. v v v No
Time Degraded Control App. v ['4 ['4 No
Resource Blocking - CPU | RTOS/App. X v v Yes
Resource Blocking - Port | RTOS/App. X v v Yes
FreeRTOS Freeze RTOS X v %4 Yes
CPU Reboot RTOS X v v Yes

TABLE I: Our approach tolerates the system-level faults using only one processing unit. Whereas, System-Level Simplex [9] needs an extra
processing unit to tolerate these faults.

makes the helicopter follow a set of circular set points The logic of the complex controller is not safe, i.e. as it control the plant
to follow the set points, the helicopter may hit the surface.

2) Controller Implementation: For the prototype of the proposed design, a Freescale i. MX7D application processor is considered.
This SoC provides two general purpose ARM Cortex-A7 cores capable of running at the maximum frequency of 1 GHz and one
real-time ARM Cortex-M4 core that runs at the maximum frequency of 200 MHz. The real-time core runs from tightly coupled
memory to ensure predictable behavior required for real-time applications/tasks. The real-time core on the considered platform
runs FreeRTOS 3, a popular open-source real-time operating system.

Due to the real-time constraints of the control tasks, we choose the real-time ARM Cortex-M4 core to run the controller. Faults
occurring on ARM Cortex-M4 core trigger a full restart of the ARM Cortex-M4 core followed by a full reload of the image
containing the OS (FreeRTOS) and the control software. On the i.MX7D platform, only the Cortex-A7 cores have direct access
to the flash memory, and only these two cores are responsible for loading the binary images of the real-time core from flash.
The first time after a platform bootstrap, the image of the FreeRTOS and the control software is loaded into the RAM of the
Cortex-A7 cores. Every time the real-time core restarts, the FreeRTOS and control applications are loaded into real-time core’s
tightly coupled memory by any of the Cortex-A7 cores. This procedure also reduces the restart-time of the real-time core as it
does not have to read the image from flash memory (which is usually slower than RAM). With the above implementation, the
restart time of the real-time core is less than 1ms*.

The control tasks (SC, CC, and DM tasks) on the ARM Cortex-M4 core run with a frequency of 50 Hz (i.e., period of 20 ms).
Our controller interfaces with the 3DOF helicopter through a PCle-based Q8 High-Performance H.I.L. Control and data acquisition
unit [36] and an intermediate Linux-based PC. The PC communicates with the .MX7D through a serial port and uses a custom
Linux driver for sending the voltages to the 3DOF helicopter motors and reading the sensor values. Inside FreeRTOS, a task
periodically checks if the SC and DM tasks have completed before their response time, and it updates the WD timer accordingly.
Otherwise, the WD expires, triggering a restart of real-time core. After the completion instant of every task, the scheduler state
is stored in a fixed address of the Cortex-A7 RAM. Notice that the Cortex-A7 RAM is not impacted by restarting the Cortex-M4
core. Therefore, after the restart of Cortext-M4 core, the scheduler state can retrieved from the system RAM of Cortex A7 cores.

B. Fault Injection

Table I presents a list of faults that we tested on our implemented controller. For the investigated system-level faults, we
observed that the WD timer restarted the system, the safety controller task did not miss the deadline after restart, and the physical
system remained in safe state. For application faults, we observed that when the helicopter’s state approached potentially unsafe
states, as a result of faults or unsafe logic in complex controller, the DM detected the safety hazard and switched the control to
safety controller. This prevented the helicopter from crashing.

To provide a comparison point, we provide the performance of Application-Level Simplex and System-Level Simplex. As shown
in Table I, System-Level Simplex is able to tolerate all the system-level and application-level faults because, due to hardware
isolation, backup controller is not impacted by the system-level faults on the complex subsystem. Whereas our proposed approach
does not require any additional hardware.

In the rest of this section, we elaborate some of these faults.

1) Maximum Voltage in Wrong Way: The helicopter should not hit the surface even if the CC outputs a voltage that normally
would result in a crash. We consider an extreme case of this scenario where the CC generates a voltage that pushes the helicopter
towards the surface. The unsafe CC commands were detected by DM, and the control was switched to the SC until the helicopter
was in the safety and then control was handed back to CC.

2) Blocking Shared Resource: A faulty process may behave differently in runtime from its expected/reported behavior. For
instance, it may lock a particular resource which is also needed by other critical tasks for more than the intended duration. Or, it
may execute for more time than its reported WCET that is used for the schedulability test of the system. These faults may also
originate from RTOS or driver misbehavior due to race condition or other reasons. If the fault delays/stops the execution of the

3http://www.freertos.org
4SC task activates one of the GPIO pins immediately after it executes. The restart time is measured externally using the signal on this pin. After multiple
experiments, a conservative upper bound was picked for the restart time.
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Fig. 8: Minimum Period: 10, Maximum Period: 1000

DM or SC, WD will trigger a system-wide restart. This recovers the system from the fault and keeps the physical system safe.
We perform two experiments to test the fault-tolerance against this category of faults.

In the first experiment, we added an additional task to the system that uses the serial port in parallel to the SC task to
communicate with the PC. We injected a fault into this task such that in random execution cycles, it holds the lock on the serial
port for more than the intended period. This prevents the SC task from sending the control command (for which it requires the
serial port). As a result, WD expires and restarts the system. We observed that the system recovered from the fault and remained
safe during the restart.

In the second test, we introduced a task that runs at the same priority as the SC and DM. We injected a fault, into the task such
that in some cycles, its execution time exceeds its reported WCET. FreeRTOS runs the tasks with equal priority using round-robin
scheduling with a context switch at every 1ms. Therefore, the faulty task delays the response time of the DM and SC. If the
interference is too long, the output of SC may not be ready by the time, the flushing task needs to update the actuators. When
this happened, WD restarted the system.

C. Evaluating Performance of Scheduling Schemes

In this section, we evaluate the performance of four fault-tolerant scheduling schemes that are discussed in this paper. For
each data point in the experiments, 500 task sets with the specified utilization and number of tasks are generated. Then, RBR-
feasibility of the task sets are evaluated under four discussed schemes; fully preemptive, fully non-preemptive, non-preemptive
ending intervals, and preemption thresholds. In order to evaluate performance of the scheduling schemes, all the tasks in the
analysis are assumed to be part of the critical workload. Priorities of the tasks are assigned according to the periods, so a task
with shorter period has a higher priority.

The experiments are performed with two sets of parameters for the periods of the task sets. In the first set of
experiments (Figure 8), task sets are generated with periods in the range of 10 to 1000 time units. In the second set (Figure 9),
tasks have a period in the range of 900 to 1000 time units. As a result, tasks in the first experiment have more diverse set of
periods than the second one.

As shown in Figure 8(a) and 9(a), all the task sets with utilization less than 50% are RBR-feasible under preemptive scheduling.
This observation is consistent with the results of [25] which considers preemptive task sets under rate monotonic scheduling with
a recovery strategy similar to ours (re-executing all the unfinished tasks), and shows that all the task sets with utilization under
50% are schedulable.

Moreover, a comparison between Figure 8(a) and 9(a) reveals that fully preemptive setting performs better when tasks in the
task set have diverse rates. To understand this effect, we must notice that the longest preemption chain for a task in preemptive
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setting, consists of the execution time of all the tasks with a higher priority. Therefore, under this scheduling strategy, tasks with
low priority are the bottleneck for RBR-feasibility analysis. When the diversity of the periods is increased, lower priority tasks,
on average, have much longer periods. As a result, they have a larger slack to tolerate the overhead of restarts compared to the
lower priority tasks in task sets with less diverse periods. Hence, more task sets are RBR-feasible when a larger range of periods
is considered.

On the contrary, when tasks have more diverse periods, non-preemptive setting performs worse (Figure 8(b) and 9(b)). This
is because, with diverse periods, tasks with shorter periods (and higher priorities) experience longer blocking times due to low
priority tasks with long execution times.

As the figures show, scheduling with preemption thresholds and non-preemptive intervals in both experiments yield better
performance than preemptive and non-preemptive schemes. This effect is expected because the flexibility of these schemes allows
them to decrease the overhead of restarts by increasing the non-preemptive regions, or by increasing the preemption thresholds
while maintaining the feasibility of the task sets. Tasks under these disciplines exhibit less blocking and lower restart overhead.

Preemption thresholds and non-preemptive endings in general demonstrate comparable performance. However, in task sets with
very small number of tasks (2-10 task), scheduling using non-preemptive ending intervals performs slightly better than preemption
thresholds. This is due to the fact that, with small number of tasks, the granularity of the latter approach is limited because few
choices can be made on the tasks’ preemption thresholds. Whereas, the length of non-preemptive intervals can be selected with
a finer granularity and is not impacted by the number of tasks.

VIII. FUTURE WORK AND CONCLUSION

Software Faults: Current proposed approach does not handle software faults that modify the program logic or output of the
SC and the DM at execution time. Utilizing frameworks such as ARM TrustZone [37] and limiting the access to these critical
components can mitigate this issue.

Restart Time: As the restart time of the platform increases, the feasibility of the task set decreases. Therefore, the proposed
solution in its current form, even though useful for many platforms, may not suit platforms with a long restart time. However,
the current restart time of many platforms is not optimal, simply because reducing the reboot time of the platform has not been
investigated. We are actively working on an alternative multi-stage booting solution for multi-core platforms to mitigate this
problem. Our main idea is to boot one core with the bare minimum requirements to execute the SC in the shortest time possible.
The SC can keep the system safe, while the real-time or general purpose OS boots on the other cores. Once the boot process
is complete, the control switches to the controllers running on the OS. As a future extension, we are working on implementing
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this solution on i.MX7D platform. We first boot the real-time core with FreeRTOS and SC, then boot an embedded Linux on the
general purpose core and move the control to the Linux core.

Conclusion: Restarting is considered a reliable way to recover traditional computing systems from complex software faults.
However, restarting safety-critical CPS is challenging. In this work we propose a restart-based fault-tolerance approach and analyze
feasibility conditions under various schedulability schemes. We analyze the performance of these strategies for various task sets.
Furthermore, we implemented a proof-of-concept prototype and tested it against faults in the application and RTOS. This approach
enables us to provide formal safety guarantees in the presence of software faults in the application-layer as well as system-layer
faults utilizing only one commercial off-the-shelf processor.
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