- 1. Suppose $y^3 + 7xy + x^4 = 9$. Determine the equation of the tangent line to the curve at the point (1,1).
- 2. Show that there is some a with 0 < a < 2 such that $a^2 + cos(\pi a) = 4$
- 3. Show that the equation $xe^x = 2$ has a solution in the interval (0,1).
- 4. Find the equation of the tangent line to the curve $y = e^x secx$ at the point $x = \frac{\pi}{4}$
- 5. Differentiate the following with respect to x.
 - (a) $e^{\cos x}$
 - (b) $(4x^2+5)^3$
 - (c) $\ln(secx)$
 - (d) $x^2 \log(x^3 + 2)$
 - (e) $\frac{1-secx}{tanx}$
 - (f) $y = sec^4x$
 - (g) $y = \frac{1}{\sqrt{x^3+6}}$
 - (h) $y = \sqrt{x \cot x}$
- 6. Find all x values such that $f(x) = 2sinx + sin^2x$ has a horizontal tangent at x.
- 7. Evaluate $\lim_{x\to 0} \frac{\sin 2x}{\sin 4x}$
- 8. Evaluate $\lim_{x\to 0} \frac{\sin x^2}{x}$
- 9. Let $h(x) = f \circ g(x)$, $k(x) = g \circ f(x)$, w(x) = f(x) + g(x), q(x) = f(x) g(x), $p(x) = \frac{f(x)}{g(x)}$ and r(x) = f(x).g(x). Evaluate h'(-1), k'(2), w'(3), q'(4), p'(-1), r'(4).

X	f(x)	g(x)	f'(x)	g'(x)
-1	4	3	-1	2
2	3	4	2	-1
3	-1	2	3	4
4	2	-1	4	3

10. Find the derivative of y with respect to x (i.e $\frac{dy}{dx}$)

- (a) $ln(xy) = cos(x^4)$
- (b) $x^{2/3} + y^{2/3} = \pi$
- (c) $sin(xy) = ln(\frac{x}{y})$
- 11. Differentiate each function with respect to \mathbf{x} .
 - (a) $\cos^{-1}(x) 7x^2$
 - (b) $tan^{-1}(2x^6)$
 - (c) $csc^{-1}(4x^3)$