Worksheet 5 - Antiderivative, Definite Integral (4.9,5.1.5.2)

1. Fill in the missing information to show that the area between the x-axis and the graph of f(x) = 3x + 10 on the interval [2,7] can be expressed as the limit of a right Riemann sum. The only variables appearing in your limit should be n and k. Do not evaluate this limit.

$$AREA = \lim_{n \to \infty} \sum_{k=1}^{n} \left[\right]$$

2. Fill in the missing information to show that the area between the x-axis and the graph of f(x) = 2x + 1 on the interval [5,8] can be expressed as the limit of a Left Riemann sum. The only variables appearing in your limit should be n and k. You do not need to evaluate this limit.

$$AREA = \lim_{n \to \infty} \sum_{k=1}^{n} \left[\right]$$

3. Evaluate the following limit.

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{5k}{n^3} + \frac{7}{n} \right)$$

4. The definite integral $\int_{2}^{6} e^{t^2} dt$ can be written as a limit. Fill in the missing information in this limit.

$$\int_{2}^{6} e^{t^{2}} dt = \lim_{n \to \infty} \sum_{k=1}^{n} \left[\qquad \qquad \right]$$

5. Suppose that f is an odd function and g is an even function which are each integrable on the interval [-5, 5]. Given that $\int_0^5 f(x) dx = 8$ and $\int_0^5 g(x) dx = 3$, evaluate the following definite integrals. (a) $\int_5^0 g(x) dx$ (b) $\int_5^5 f(x) dx$

(c)
$$\int_{-5}^{5} \left(2f(x) + 4g(x)\right) dx$$

(d)
$$\int_{-5}^{5} \left(4 + (f(x))^3\right) dx$$

- 6. Find a formula for f(x) given that $f''(x) = 5 \sin x + 3 \cos x$, f(0) = 10, and f'(0) = 10.
- 7. A function f(x) has derivative $f'(x) = 6x^2 + 5$. Find a formula for f(x) given that its graph goes through the point (1, 15).
- 8. Evaluate the following limit. Be sure to use proper notation throughout your evaluation of this limit.

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{14k}{n^2} - \frac{4}{n} \right)$$

9. Suppose that f is an odd function which is integrable on the interval [-5, 5]. If

 $\int_{0}^{2} f(x) dx = 4$ and $\int_{2}^{3} f(x) dx = 10$, then evaluate the following quantities.

(a)
$$\int_0^5 f(x) \, dx + \int_5^3 f(x) \, dx$$

(b)
$$\int_{-2}^{2} f(x) \, dx$$

(c)
$$\int_{-2}^{2} f(|x|) dx$$