Summer 2015 Test 1 Syllabus

Test 1 will cover Chapter 1 and Chapter 2. We skipped 2.4 from Chapter 2. We skipped some parts of 2.5, 2.7 and 2.8.

1. **Domain**(10 points)

You are supposed to know the domain of the following functions:

- Polynomials
- Rational functions
- Root functions
- trigonometric functions(sine,cos,tan,cot,sec,cosec,..)
- inverse trigonometric functions (arcsin, arccos, arctan,..)
- logaritmic functions
- exponential functions

2. Limit Definition of Derivative(10 points)

You are supposed to know how to find derivative of a function by using limit definition.

3. Finding inverse of a given one-to-one function(10 points)

4. Horizontal and Vertical Asymptote(10 points)

Please check lecture notes to see examples about this topic, check definitions carefully.

5. Trigonometric functions(15 points)

Please check the quiz on trigonometric functions and trigonometry worksheet. You are supposed to know how to evaluate following functions:

- $sin(\pi \pm \theta)$
- $cos(\pi \pm \theta)$
- $sin(\frac{\pi}{2} \pm \theta)$

- $cos(\frac{\pi}{2} \pm \theta)$
- $arcsin(\theta), arcos(\theta), arcsec(\theta), arccot(\theta), arccosec(\theta).$
- 6. Exponential growth (10 points) You should know when and how to use exponential function which is $y = Ca^x$.
- 7. **True-False** (10 points) You should know properties of even,odd functions and inverse functions. You should have a good understanding about the definition of being continuous at a point. You should also know the relation between being continuous and being differentiable.
- 8. Limit(25 points)
 - Limit of a polynomial
 - Limit of a rational function
 - Squeeze Theorem
 - Calculating limits at infinity
 - Limit of exponential functions at $\pm \infty$
 - Limit of logarithmic functions (especially we can state the vertical asymptote of a logarithmic function by using infinite limits).
 - Limit of tan, arctan (find vertical asymptotes of tan, and horizontal asymptotes of arctan, state them by using infinite limits and limits at infinity).