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Consolidation onto Multicores 

• Benefits 

– Reduces the number of CPUs and wiring harness among them 

– Leads to a significant reduction in cost and space requirements 

 

Vendor #1 Vendor #2 

Vendor #3 Vendor #4 

Real-time System 

Consolidation 

Multi-core SBC 

Single-core SBCs 
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Key Challenges 

 

 
Timing predictability without losing efficiency 

Temporal isolation among consolidated workloads 

(Quantification & minimization of temporal interference) 

Use of standardized COTS multi-core platforms 
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Multi-Core Memory Hierarchy 
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Last-Level Shared Cache 

• A large cache shared among processing cores 

– Reduces memory access time (7 – 10x faster than DRAM access) 

– Mitigates DRAM bandwidth consumption 

– Allows high cache utilization 

 
Intel Core i7 

8-15 MB L3 Cache 

Freescale P4080 

2MB L3 Cache 
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Uncontrolled Use of Shared Cache 

1. Inter-core Interference 

 

 P1 P2 P3 

L1 

L2 

L1 

L2 

L1 

L2 

L3 

P4 

L1 

L2 

Core 

Private  

Cache 

Shared 

Cache 

2. Intra-core Interference 
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43% Slowdown 27% Slowdown 
(C:2.5ms, T:10ms) 
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Coordinated Cache Management 

• Challenges 

– Uncontrolled shared cache: Cache interference penalties 

– Cache partitioning: 

• Limited number of cache partitions 

• Cache under-utilization 

 

• Key idea: Controlled sharing of partitioned caches  

                 while ensuring timing predictability 
 

1. Provides predictability on multi-core real-time systems 

2. Addresses the limitations of cache partitioning 

[ECRTS14] Hyoseung Kim, Arvind Kandhalu, and Raj Rajkumar. A Coordinated Approach for Practical OS-Level Cache Management in 
Multi-Core Real-Time Systems. In ECRTS, 2013. 
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Coordinated Cache Management 
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Per-core cache reservation 

 Prevent Inter-core cache interference 
Reserved cache sharing: Mitigate the problems with page coloring 

           Considerations          1. Analyzing intra-core interference 

                                          2. Guaranteeing memory requirements 
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Coordinated Cache Management 
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Cache-Aware Task Allocation 

• Algorithm to allocate tasks and cache partitions to cores 

• Exploits the benefits of cache sharing by load concentration 
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Multi-Core Memory Hierarchy 
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DRAM Organization 
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Memory Controller 
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DRAM Bank Partitioning & Sharing 

• DRAM bank partitioning: software method to assign dedicated DRAM 

banks to each core (or task) 

 

 

 

 

 

 

 

• Problems 

– Limited number of DRAM bank partitions 

– Reduced usable memory size 
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Bounding Memory Interference Delay 

• Provides an upper bound on memory interference delay 

– Intra-bank and inter-bank interference delays 

– Private and shared DRAM banks 

 

 

 

 

 

 
 

Response-Time Based 

Schedulability Analysis  

[RTAS14] Hyoseung Kim et al. Bounding Memory Interference Delay in COTS-based Multi-Core Systems. In IEEE Real-Time and 
Embedded Technology and Applications Symposium (RTAS), 2014. Best Paper Award 

Request-driven bounding 

Task’s own memory requests 

Job-driven bounding 

Interfering memory requests  

during the task execution 
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Multi-Core Memory Hierarchy 
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Linux/RK 

• CMU’s open source real-time extensions to the Linux kernel  

• Resource kernel (RK) approach 

• Resource reservation: tasks can reserve a portion of system resources 

– Ex) CPU reserve: (budget, replenishment period, CPU affinity, policy) 

• Guarantees resource allocations at admission time 

• Enforces resource usage 
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Multi-Core Memory Management 

• Linux/RK memory manager 

– Supports software cache and DRAM partitioning 

– Allows tasks to specify their memory size, cache, DRAM bank demands 

Task i: memory reservation 
  - Memory size = m pages 
  - Cache partitions = h  
  - DRAM bank partitions = b 

Real-time task 

c 
Task i: allocated pages 

Linux/RK Memory Manager 
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Cache Interference 

• Task execution time and L3 misses  

– Intel i7 2600 3.4GHz quad-core, 8MB L3 cache, DDR3-1333 

 

Task Instance 

10

11

12

13

14

0 10 20 30 40 50 60 70 80 90 100

Ex
e

cu
ti

o
n

 T
im

e
 

(m
se

c)
 

w/o Cache Reservation

w/   Cache Reservation (p=12)

0

3

6

9

12

0 10 20 30 40 50 60 70 80 90 100

L3
 m

is
se

s 
p

e
r 

m
se

c 
(x

 1
0

0
0

) 
 

w/o Cache Reservation

w/   Cache Reservation (p=12)

Solo WCET 

Solo WC L3 misses 

18 



CMAS CPSWeek’15 

Memory Interference 

• Shared DRAM Bank  
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Memory Interference 

• Private DRAM Bank 
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4.1x increase  DRAM bank partitioning  

helps reducing the memory interference 

Our analysis enables the quantification of the benefit of DRAM bank partitioning 
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Memory Interference 

• Private DRAM Bank under moderate memory contention 
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Multi-Core Virtualization 
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Real-Time System Virtualization 

• Barrier to consolidation 

– Each app. could have been developed  

independently by different vendors 

• Bare-metal / Proprietary OS 

• Linux 

– Legacy software 

– Different license issues 

• Consolidation via virtualization 

– Each application can maintain  

its own implementation 

– Minimizes re-certification process 

– IP protection, license segregation 

– Fault isolation 

 

 

Virtualization 

Multi-core CPU 

Real-Time Hypervisor 
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VM Scheduling Structure 

• Two-level hierarchical scheduling structure 

– Task scheduling and VCPU scheduling 
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Virt/RK 

• Real-time virtualization with resource kernel approach 

– CPU reservation for VCPUs 

– Memory reservation for VMs 

 

 

 

 

 

 

 

– Current implementation: Virt/RK::KVM-x86 

– Under development: Virt/RK::KVM-ARM, Virt/RK::L4 

 

 

 

 

 

 

 

 

VM1 
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τ2 

VCPU2 

Task 
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Task Scheduler 

Task 
τ4 

VM Resource Reservation 

• VCPU1: 30% of physical CPU 

• VCPU2: 30% of physical CPU 

• VM1: 20% of host memory w/  

         cache & DRAM bank  

         partitioning 
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Resource Sharing in Virtualization 

• Consolidation inevitably causes the sharing of resources 

– Sensors 

– Network interfaces 

– I/O devices 

– Shared data 

• Long blocking time in a virtualized environment 

– VCPU level preemptions 

– VCPU budget depletion 

Requires mutually-exclusive locks  

to avoid race conditions 

Need a synchronization mechanism with bounded blocking times  

for multi-core real-time virtualization 
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vMPCP 

• Virtualization-aware Multiprocessor Priority Ceiling Protocol 

– Provides bounded blocking time on accessing shared resources  

in multi-core virtualization  

• Hierarchical priority ceilings 

• Two-level priority queue for a mutex waiting list 

– Optional VCPU budget overrun to reduce blocking times 

– VCPU budget replenishment policies 

• Periodic server 

• Deferrable server 

– Implemented on Virt/RK::KVM-x86 

[RTSS14] Hyoseung Kim, Shige Wang, and Raj Rajkumar. vMPCP: A Synchronization Framework for Multi-Core Virtual Machines. In IEEE Real-
Time Systems Symposium (RTSS), 2014. 
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Case Study: Effect of vMPCP 
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vMPCP yields 29% shorter task response time with shared resources 
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Summary 

• Workload Consolidation into a Multi-core Platform 

– Predictability without losing efficiency 

– Quantification and minimization of temporal interference 

• Multi-core memory hierarchy 

– Coordinated cache management 

• Cache partitioning, reserve, and sharing 

– Bounding memory interference  

• DRAM partitioning and sharing  Quantifies the benefit of partitioning 

• Memory-bus and DRAM bank interference analysis 

• Real-time virtualization 

– Virt/RK: resource reservation approach 

– vMPCP: resource sharing for real-time virtualization 
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What next? 

• Modeling state-of-the-art computer architecture techniques 

– Hardware prefetchers 

– Future memory controllers 

– Future DRAM designs 

 

• Extending existing real-time systems work to virtualization 

– Diverse locking protocols (e.g., RW-lock) 

– Fault tolerance mechanisms 

– Hardware accelerations (e.g., GPGPU) 
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