
CMAS CPSWeek’15

Consolidation of Real-Time Systems

into a Multi-Core Platform

hyoseung@cmu.edu raj@ece.cmu.edu

Raj Rajkumar Hyoseung Kim

CMAS CPSWeek’15

Consolidation onto Multicores

• Benefits

– Reduces the number of CPUs and wiring harness among them

– Leads to a significant reduction in cost and space requirements

Vendor #1 Vendor #2

Vendor #3 Vendor #4

Real-time System

Consolidation

Multi-core SBC

Single-core SBCs

2

CMAS CPSWeek’15

Key Challenges

Timing predictability without losing efficiency

Temporal isolation among consolidated workloads

(Quantification & minimization of temporal interference)

Use of standardized COTS multi-core platforms

3

CMAS CPSWeek’15

Multi-Core Memory Hierarchy

Core 1 Core 2 Core 3 Core P

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

…

Last-level Shared Cache

Memory Controller

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B

…

Cache

interference

Memory bus

interference

DRAM bank

interference

4

CMAS CPSWeek’15

Last-Level Shared Cache

• A large cache shared among processing cores

– Reduces memory access time (7 – 10x faster than DRAM access)

– Mitigates DRAM bandwidth consumption

– Allows high cache utilization

Intel Core i7

8-15 MB L3 Cache

Freescale P4080

2MB L3 Cache

5

CMAS CPSWeek’15

Uncontrolled Use of Shared Cache

1. Inter-core Interference

 P1 P2 P3

L1

L2

L1

L2

L1

L2

L3

P4

L1

L2

Core

Private

Cache

Shared

Cache

2. Intra-core Interference

P1 P2 P3

L1

L2

L1

L2

L1

L2

L3

P4

L1

L2

Core

Private

Cache

Shared

Cache

43% Slowdown 27% Slowdown
(C:2.5ms, T:10ms)

* PARSEC Benchmark on Intel i7 6

CMAS CPSWeek’15

Coordinated Cache Management

• Challenges

– Uncontrolled shared cache: Cache interference penalties

– Cache partitioning:

• Limited number of cache partitions

• Cache under-utilization

• Key idea: Controlled sharing of partitioned caches

 while ensuring timing predictability

1. Provides predictability on multi-core real-time systems

2. Addresses the limitations of cache partitioning

[ECRTS14] Hyoseung Kim, Arvind Kandhalu, and Raj Rajkumar. A Coordinated Approach for Practical OS-Level Cache Management in
Multi-Core Real-Time Systems. In ECRTS, 2013.

7

CMAS CPSWeek’15

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Task Parameters

Coordinated Cache

Management

τi :(Ci

p
, Ti, Di, Mi)

Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Per-core cache reservation

 Prevent Inter-core cache interference
Reserved cache sharing: Mitigate the problems with page coloring

 Considerations 1. Analyzing intra-core interference

 2. Guaranteeing memory requirements

8

CMAS CPSWeek’15

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Coordinated Cache

Management Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Task Parameters

τi :(Ci

p
, Ti, Di, Mi)

Cache-Aware Task Allocation

• Algorithm to allocate tasks and cache partitions to cores

• Exploits the benefits of cache sharing by load concentration

9

CMAS CPSWeek’15

Multi-Core Memory Hierarchy

Core 1 Core 2 Core 3 Core P

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

…

Last-level Shared Cache

Memory Controller

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B

…

Cache

interference

Memory bus

interference

DRAM bank

interference

10

CMAS CPSWeek’15

DRAM Organization

DRAM Rank
CHIP

1

CHIP

2

CHIP

3

CHIP

4

CHIP

5

CHIP

6

CHIP

7

CHIP

8

Data bus
8-bit

Address bus

Command bus

64-bit

DRAM Chip

Bank 1

C
o
m

m
a

n
d
 d

e
c
o

d
e

r

Data bus

Address bus

Command
bus

8-bit

Bank ...
Bank 8

Columns

R
o
w

s

Row buffer

R
o
w

 d
e

c
o

d
e
r

Column decoder

R
o

w
 a

d
d

re
s
s

Column
address

DRAM access latency depends on which row is currently in the row buffer

Row hit

Row conflict

11

CMAS CPSWeek’15

Memory Controller

Request buffer
Bank 1
Priority
Queue

Bank 2
Priority
Queue

Bank B
Priority
Queue

...

Bank 1
Scheduler

Bank 2
Scheduler

Bank B
Scheduler

...

Channel Scheduler

Memory scheduler

Read/

Write

Buffers

DRAM address/command buses

Processor
data bus

DRAM
data bus

Memory requests from CPU cores

Two-level hierarchical

scheduling structure

(FR-FCFS)

Inter-bank interference at channel scheduler

Intra-bank interference at bank scheduler
Memory interference

12

CMAS CPSWeek’15

DRAM Bank Partitioning & Sharing

• DRAM bank partitioning: software method to assign dedicated DRAM

banks to each core (or task)

• Problems

– Limited number of DRAM bank partitions

– Reduced usable memory size

Bank 1
Scheduler

Bank 2
Scheduler

Channel Scheduler

Core 1 Core 2

(1) w/o bank partitioning

Bank 1
Scheduler

Bank 2
Scheduler

Channel Scheduler

Core 1 Core 2

(2) w/ bank partitioning

Intra-bank and inter-bank

interference
Inter-bank interference only

DRAM bank sharing

13

CMAS CPSWeek’15

Bounding Memory Interference Delay

• Provides an upper bound on memory interference delay

– Intra-bank and inter-bank interference delays

– Private and shared DRAM banks

Response-Time Based

Schedulability Analysis

[RTAS14] Hyoseung Kim et al. Bounding Memory Interference Delay in COTS-based Multi-Core Systems. In IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014. Best Paper Award

Request-driven bounding

Task’s own memory requests

Job-driven bounding

Interfering memory requests

during the task execution

14

CMAS CPSWeek’15

Multi-Core Memory Hierarchy

Core 1 Core 2 Core 3 Core P

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

…

Last-level Shared Cache

Memory Controller

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B
…

Cache

interference

Memory bus

interference

DRAM bank

interference

Operating System

Task
τ1

Task
τ2

Task
τ3

Task
τ4

Task
τ5

Task
τ6

15

CMAS CPSWeek’15

Linux/RK

• CMU’s open source real-time extensions to the Linux kernel

• Resource kernel (RK) approach

• Resource reservation: tasks can reserve a portion of system resources

– Ex) CPU reserve: (budget, replenishment period, CPU affinity, policy)

• Guarantees resource allocations at admission time

• Enforces resource usage

Resource

Set

CPU

Reserve Task

1

Network

Reserve

Memory

Reserve

Task

2

Task

3

16

CMAS CPSWeek’15

Multi-Core Memory Management

• Linux/RK memory manager

– Supports software cache and DRAM partitioning

– Allows tasks to specify their memory size, cache, DRAM bank demands

Task i: memory reservation
 - Memory size = m pages
 - Cache partitions = h
 - DRAM bank partitions = b

Real-time task

c
Task i: allocated pages

Linux/RK Memory Manager

Cache 1 Cache 2 Cache 3 Cache H ...

Bank 1

Bank 2

Bank B

...

...

...

Bank 1

Bank 2

Bank B

...

...

...

17

Unallocated physical pages

CMAS CPSWeek’15

Cache Interference

• Task execution time and L3 misses

– Intel i7 2600 3.4GHz quad-core, 8MB L3 cache, DDR3-1333

Task Instance

10

11

12

13

14

0 10 20 30 40 50 60 70 80 90 100

Ex
e

cu
ti

o
n

 T
im

e

(m
se

c)

w/o Cache Reservation

w/ Cache Reservation (p=12)

0

3

6

9

12

0 10 20 30 40 50 60 70 80 90 100

L3
 m

is
se

s
p

e
r

m
se

c
(x

 1
0

0
0

)

w/o Cache Reservation

w/ Cache Reservation (p=12)

Solo WCET

Solo WC L3 misses

18

CMAS CPSWeek’15

Memory Interference

• Shared DRAM Bank

0

200

400

600

800

1000

1200

1400

N
o

rm
. R

e
sp

o
n

se
 T

im
e

 (
%

)

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

12x increase due to

memory interference

Observed

Predicted by analysis

19

CMAS CPSWeek’15

Memory Interference

• Private DRAM Bank

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264
0

100

200

300

400

500

N
o

rm
. R

e
sp

o
n

se
 T

im
e

 (
%

)

Observed

Predicted by analysis

4.1x increase DRAM bank partitioning

helps reducing the memory interference

Our analysis enables the quantification of the benefit of DRAM bank partitioning

20

CMAS CPSWeek’15

Memory Interference

• Private DRAM Bank under moderate memory contention

0

20

40

60

80

100

120

140

160

180

N
o

rm
. R

e
sp

o
n

se
 T

im
e

 (
%

) Average over-estimates are 8%

(13% for a shared bank)
Observed

Predicted by analysis

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

Our analysis bounds memory interference delay with low pessimism

under both severe and moderate memory contentions

21

CMAS CPSWeek’15

Multi-Core Virtualization

22

CMAS CPSWeek’15

Real-Time System Virtualization

• Barrier to consolidation

– Each app. could have been developed

independently by different vendors

• Bare-metal / Proprietary OS

• Linux

– Legacy software

– Different license issues

• Consolidation via virtualization

– Each application can maintain

its own implementation

– Minimizes re-certification process

– IP protection, license segregation

– Fault isolation

Virtualization

Multi-core CPU

Real-Time Hypervisor

23

CMAS CPSWeek’15

VM Scheduling Structure

• Two-level hierarchical scheduling structure

– Task scheduling and VCPU scheduling

 VM1

VCPU1

Task
τ1

Task Scheduler

Task
τ2

VCPU2

Task
τ3

Task Scheduler

Task
τ4

Hypervisor

Physical Core 1 (PCPU1)

VCPU Scheduler

VM2

VCPU3

Task
τ5

Task Scheduler

Task
τ6

VCPU4

Task
τ7

Task Scheduler

Task
τ8

Physical Core 2 (PCPU2)

VCPU Scheduler

24

CMAS CPSWeek’15

Virt/RK

• Real-time virtualization with resource kernel approach

– CPU reservation for VCPUs

– Memory reservation for VMs

– Current implementation: Virt/RK::KVM-x86

– Under development: Virt/RK::KVM-ARM, Virt/RK::L4

VM1

VCPU1

Task
τ1

Task Scheduler

Task
τ2

VCPU2

Task
τ3

Task Scheduler

Task
τ4

VM Resource Reservation

• VCPU1: 30% of physical CPU

• VCPU2: 30% of physical CPU

• VM1: 20% of host memory w/

 cache & DRAM bank

 partitioning

25

CMAS CPSWeek’15

Resource Sharing in Virtualization

• Consolidation inevitably causes the sharing of resources

– Sensors

– Network interfaces

– I/O devices

– Shared data

• Long blocking time in a virtualized environment

– VCPU level preemptions

– VCPU budget depletion

Requires mutually-exclusive locks

to avoid race conditions

Need a synchronization mechanism with bounded blocking times

for multi-core real-time virtualization

26

CMAS CPSWeek’15

vMPCP

• Virtualization-aware Multiprocessor Priority Ceiling Protocol

– Provides bounded blocking time on accessing shared resources

in multi-core virtualization

• Hierarchical priority ceilings

• Two-level priority queue for a mutex waiting list

– Optional VCPU budget overrun to reduce blocking times

– VCPU budget replenishment policies

• Periodic server

• Deferrable server

– Implemented on Virt/RK::KVM-x86

[RTSS14] Hyoseung Kim, Shige Wang, and Raj Rajkumar. vMPCP: A Synchronization Framework for Multi-Core Virtual Machines. In IEEE Real-
Time Systems Symposium (RTSS), 2014.

27

CMAS CPSWeek’15

Case Study: Effect of vMPCP

Baseline

Virtualization-unaware

synchronization protocol

(MPCP)

vMPCP

Virtualization-aware

synchronization protocol

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 (μsec)

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 (μsec)

vMPCP yields 29% shorter task response time with shared resources

28

CMAS CPSWeek’15

Summary

• Workload Consolidation into a Multi-core Platform

– Predictability without losing efficiency

– Quantification and minimization of temporal interference

• Multi-core memory hierarchy

– Coordinated cache management

• Cache partitioning, reserve, and sharing

– Bounding memory interference

• DRAM partitioning and sharing Quantifies the benefit of partitioning

• Memory-bus and DRAM bank interference analysis

• Real-time virtualization

– Virt/RK: resource reservation approach

– vMPCP: resource sharing for real-time virtualization

29

CMAS CPSWeek’15

What next?

• Modeling state-of-the-art computer architecture techniques

– Hardware prefetchers

– Future memory controllers

– Future DRAM designs

• Extending existing real-time systems work to virtualization

– Diverse locking protocols (e.g., RW-lock)

– Fault tolerance mechanisms

– Hardware accelerations (e.g., GPGPU)

30

