
CMAS CPSWeek’15

Consolidation of Real-Time Systems

into a Multi-Core Platform

hyoseung@cmu.edu raj@ece.cmu.edu

Raj Rajkumar Hyoseung Kim

CMAS CPSWeek’15

Consolidation onto Multicores

• Benefits

– Reduces the number of CPUs and wiring harness among them

– Leads to a significant reduction in cost and space requirements

Vendor #1 Vendor #2

Vendor #3 Vendor #4

Real-time System

Consolidation

Multi-core SBC

Single-core SBCs

2

CMAS CPSWeek’15

Key Challenges

Timing predictability without losing efficiency

Temporal isolation among consolidated workloads

(Quantification & minimization of temporal interference)

Use of standardized COTS multi-core platforms

3

CMAS CPSWeek’15

Multi-Core Memory Hierarchy

Core 1 Core 2 Core 3 Core P

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

…

Last-level Shared Cache

Memory Controller

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B

…

Cache

interference

Memory bus

interference

DRAM bank

interference

4

CMAS CPSWeek’15

Last-Level Shared Cache

• A large cache shared among processing cores

– Reduces memory access time (7 – 10x faster than DRAM access)

– Mitigates DRAM bandwidth consumption

– Allows high cache utilization

Intel Core i7

8-15 MB L3 Cache

Freescale P4080

2MB L3 Cache

5

CMAS CPSWeek’15

Uncontrolled Use of Shared Cache

1. Inter-core Interference

 P1 P2 P3

L1

L2

L1

L2

L1

L2

L3

P4

L1

L2

Core

Private

Cache

Shared

Cache

2. Intra-core Interference

P1 P2 P3

L1

L2

L1

L2

L1

L2

L3

P4

L1

L2

Core

Private

Cache

Shared

Cache

43% Slowdown 27% Slowdown
(C:2.5ms, T:10ms)

* PARSEC Benchmark on Intel i7 6

CMAS CPSWeek’15

Coordinated Cache Management

• Challenges

– Uncontrolled shared cache: Cache interference penalties

– Cache partitioning:

• Limited number of cache partitions

• Cache under-utilization

• Key idea: Controlled sharing of partitioned caches

 while ensuring timing predictability

1. Provides predictability on multi-core real-time systems

2. Addresses the limitations of cache partitioning

[ECRTS14] Hyoseung Kim, Arvind Kandhalu, and Raj Rajkumar. A Coordinated Approach for Practical OS-Level Cache Management in
Multi-Core Real-Time Systems. In ECRTS, 2013.

7

CMAS CPSWeek’15

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Task Parameters

Coordinated Cache

Management

τi :(Ci

p
, Ti, Di, Mi)

Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Per-core cache reservation

 Prevent Inter-core cache interference
Reserved cache sharing: Mitigate the problems with page coloring

 Considerations 1. Analyzing intra-core interference

 2. Guaranteeing memory requirements

8

CMAS CPSWeek’15

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Coordinated Cache

Management Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Task Parameters

τi :(Ci

p
, Ti, Di, Mi)

Cache-Aware Task Allocation

• Algorithm to allocate tasks and cache partitions to cores

• Exploits the benefits of cache sharing by load concentration

9

CMAS CPSWeek’15

Multi-Core Memory Hierarchy

Core 1 Core 2 Core 3 Core P

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

…

Last-level Shared Cache

Memory Controller

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B

…

Cache

interference

Memory bus

interference

DRAM bank

interference

10

CMAS CPSWeek’15

DRAM Organization

DRAM Rank
CHIP

1

CHIP

2

CHIP

3

CHIP

4

CHIP

5

CHIP

6

CHIP

7

CHIP

8

Data bus
8-bit

Address bus

Command bus

64-bit

DRAM Chip

Bank 1

C
o
m

m
a

n
d
 d

e
c
o

d
e

r

Data bus

Address bus

Command
bus

8-bit

Bank ...
Bank 8

Columns

R
o
w

s

Row buffer

R
o
w

 d
e

c
o

d
e
r

Column decoder

R
o

w
 a

d
d

re
s
s

Column
address

DRAM access latency depends on which row is currently in the row buffer

Row hit

Row conflict

11

CMAS CPSWeek’15

Memory Controller

Request buffer
Bank 1
Priority
Queue

Bank 2
Priority
Queue

Bank B
Priority
Queue

...

Bank 1
Scheduler

Bank 2
Scheduler

Bank B
Scheduler

...

Channel Scheduler

Memory scheduler

Read/

Write

Buffers

DRAM address/command buses

Processor
data bus

DRAM
data bus

Memory requests from CPU cores

Two-level hierarchical

scheduling structure

(FR-FCFS)

Inter-bank interference at channel scheduler

Intra-bank interference at bank scheduler
Memory interference

12

CMAS CPSWeek’15

DRAM Bank Partitioning & Sharing

• DRAM bank partitioning: software method to assign dedicated DRAM

banks to each core (or task)

• Problems

– Limited number of DRAM bank partitions

– Reduced usable memory size

Bank 1
Scheduler

Bank 2
Scheduler

Channel Scheduler

Core 1 Core 2

(1) w/o bank partitioning

Bank 1
Scheduler

Bank 2
Scheduler

Channel Scheduler

Core 1 Core 2

(2) w/ bank partitioning

Intra-bank and inter-bank

interference
Inter-bank interference only

DRAM bank sharing

13

CMAS CPSWeek’15

Bounding Memory Interference Delay

• Provides an upper bound on memory interference delay

– Intra-bank and inter-bank interference delays

– Private and shared DRAM banks

Response-Time Based

Schedulability Analysis

[RTAS14] Hyoseung Kim et al. Bounding Memory Interference Delay in COTS-based Multi-Core Systems. In IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014. Best Paper Award

Request-driven bounding

Task’s own memory requests

Job-driven bounding

Interfering memory requests

during the task execution

14

CMAS CPSWeek’15

Multi-Core Memory Hierarchy

Core 1 Core 2 Core 3 Core P

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

L1/L2

Cache

…

Last-level Shared Cache

Memory Controller

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank B
…

Cache

interference

Memory bus

interference

DRAM bank

interference

Operating System

Task
τ1

Task
τ2

Task
τ3

Task
τ4

Task
τ5

Task
τ6

15

CMAS CPSWeek’15

Linux/RK

• CMU’s open source real-time extensions to the Linux kernel

• Resource kernel (RK) approach

• Resource reservation: tasks can reserve a portion of system resources

– Ex) CPU reserve: (budget, replenishment period, CPU affinity, policy)

• Guarantees resource allocations at admission time

• Enforces resource usage

Resource

Set

CPU

Reserve Task

1

Network

Reserve

Memory

Reserve

Task

2

Task

3

16

CMAS CPSWeek’15

Multi-Core Memory Management

• Linux/RK memory manager

– Supports software cache and DRAM partitioning

– Allows tasks to specify their memory size, cache, DRAM bank demands

Task i: memory reservation
 - Memory size = m pages
 - Cache partitions = h
 - DRAM bank partitions = b

Real-time task

c
Task i: allocated pages

Linux/RK Memory Manager

Cache 1 Cache 2 Cache 3 Cache H ...

Bank 1

Bank 2

Bank B

...

...

...

Bank 1

Bank 2

Bank B

...

...

...

17

Unallocated physical pages

CMAS CPSWeek’15

Cache Interference

• Task execution time and L3 misses

– Intel i7 2600 3.4GHz quad-core, 8MB L3 cache, DDR3-1333

Task Instance

10

11

12

13

14

0 10 20 30 40 50 60 70 80 90 100

Ex
e

cu
ti

o
n

 T
im

e

(m
se

c)

w/o Cache Reservation

w/ Cache Reservation (p=12)

0

3

6

9

12

0 10 20 30 40 50 60 70 80 90 100

L3
 m

is
se

s
p

e
r

m
se

c
(x

 1
0

0
0

)

w/o Cache Reservation

w/ Cache Reservation (p=12)

Solo WCET

Solo WC L3 misses

18

CMAS CPSWeek’15

Memory Interference

• Shared DRAM Bank

0

200

400

600

800

1000

1200

1400

N
o

rm
. R

e
sp

o
n

se
 T

im
e

 (
%

)

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

12x increase due to

memory interference

Observed

Predicted by analysis

19

CMAS CPSWeek’15

Memory Interference

• Private DRAM Bank

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264
0

100

200

300

400

500

N
o

rm
. R

e
sp

o
n

se
 T

im
e

 (
%

)

Observed

Predicted by analysis

4.1x increase  DRAM bank partitioning

helps reducing the memory interference

Our analysis enables the quantification of the benefit of DRAM bank partitioning

20

CMAS CPSWeek’15

Memory Interference

• Private DRAM Bank under moderate memory contention

0

20

40

60

80

100

120

140

160

180

N
o

rm
. R

e
sp

o
n

se
 T

im
e

 (
%

) Average over-estimates are 8%

(13% for a shared bank)
Observed

Predicted by analysis

black-
scholes

body-
track

canneal ferret fluid-
animate

freq-
mine

ray-
trace

stream-
cluster

swap-
tions

vips x264

Our analysis bounds memory interference delay with low pessimism

under both severe and moderate memory contentions

21

CMAS CPSWeek’15

Multi-Core Virtualization

22

CMAS CPSWeek’15

Real-Time System Virtualization

• Barrier to consolidation

– Each app. could have been developed

independently by different vendors

• Bare-metal / Proprietary OS

• Linux

– Legacy software

– Different license issues

• Consolidation via virtualization

– Each application can maintain

its own implementation

– Minimizes re-certification process

– IP protection, license segregation

– Fault isolation

Virtualization

Multi-core CPU

Real-Time Hypervisor

23

CMAS CPSWeek’15

VM Scheduling Structure

• Two-level hierarchical scheduling structure

– Task scheduling and VCPU scheduling

 VM1

VCPU1

Task
τ1

Task Scheduler

Task
τ2

VCPU2

Task
τ3

Task Scheduler

Task
τ4

Hypervisor

Physical Core 1 (PCPU1)

VCPU Scheduler

VM2

VCPU3

Task
τ5

Task Scheduler

Task
τ6

VCPU4

Task
τ7

Task Scheduler

Task
τ8

Physical Core 2 (PCPU2)

VCPU Scheduler

24

CMAS CPSWeek’15

Virt/RK

• Real-time virtualization with resource kernel approach

– CPU reservation for VCPUs

– Memory reservation for VMs

– Current implementation: Virt/RK::KVM-x86

– Under development: Virt/RK::KVM-ARM, Virt/RK::L4

VM1

VCPU1

Task
τ1

Task Scheduler

Task
τ2

VCPU2

Task
τ3

Task Scheduler

Task
τ4

VM Resource Reservation

• VCPU1: 30% of physical CPU

• VCPU2: 30% of physical CPU

• VM1: 20% of host memory w/

 cache & DRAM bank

 partitioning

25

CMAS CPSWeek’15

Resource Sharing in Virtualization

• Consolidation inevitably causes the sharing of resources

– Sensors

– Network interfaces

– I/O devices

– Shared data

• Long blocking time in a virtualized environment

– VCPU level preemptions

– VCPU budget depletion

Requires mutually-exclusive locks

to avoid race conditions

Need a synchronization mechanism with bounded blocking times

for multi-core real-time virtualization

26

CMAS CPSWeek’15

vMPCP

• Virtualization-aware Multiprocessor Priority Ceiling Protocol

– Provides bounded blocking time on accessing shared resources

in multi-core virtualization

• Hierarchical priority ceilings

• Two-level priority queue for a mutex waiting list

– Optional VCPU budget overrun to reduce blocking times

– VCPU budget replenishment policies

• Periodic server

• Deferrable server

– Implemented on Virt/RK::KVM-x86

[RTSS14] Hyoseung Kim, Shige Wang, and Raj Rajkumar. vMPCP: A Synchronization Framework for Multi-Core Virtual Machines. In IEEE Real-
Time Systems Symposium (RTSS), 2014.

27

CMAS CPSWeek’15

Case Study: Effect of vMPCP

Baseline

Virtualization-unaware

synchronization protocol

(MPCP)

vMPCP

Virtualization-aware

synchronization protocol

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 (μsec)

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 (μsec)

vMPCP yields 29% shorter task response time with shared resources

28

CMAS CPSWeek’15

Summary

• Workload Consolidation into a Multi-core Platform

– Predictability without losing efficiency

– Quantification and minimization of temporal interference

• Multi-core memory hierarchy

– Coordinated cache management

• Cache partitioning, reserve, and sharing

– Bounding memory interference

• DRAM partitioning and sharing  Quantifies the benefit of partitioning

• Memory-bus and DRAM bank interference analysis

• Real-time virtualization

– Virt/RK: resource reservation approach

– vMPCP: resource sharing for real-time virtualization

29

CMAS CPSWeek’15

What next?

• Modeling state-of-the-art computer architecture techniques

– Hardware prefetchers

– Future memory controllers

– Future DRAM designs

• Extending existing real-time systems work to virtualization

– Diverse locking protocols (e.g., RW-lock)

– Fault tolerance mechanisms

– Hardware accelerations (e.g., GPGPU)

30

