

RT-Xen: Real-Time Virtualization

Chenyang Lu

Cyber-Physical Systems Laboratory
Department of Computer Science and Engineering

CPSL Cyber-Physical Systems Laboratory

Embedded Systems

- \triangleright Consolidate 100 ECUs \rightarrow ~10 multicore processors.
- Integrate multiple systems on a common platform.
 - Infotainment on Linux or Android
 - Safety-critical control on AUTOSAR
 - □ Virtualization: COQOS, Integrity Multivisor, Xen automotive
- Must preserve real-time performance on a virtualized platform!

Source: http://www.edn.com/design/automotive/4399434/Multicore-and-virtualization-in-automotive-environments

Virtualization is not real-time today

- Existing hypervisors provide no guarantee on latency
 - Xen: credit scheduler, [credit, cap]
 - □ VMware ESXi: [reservation, share, limitation]
 - Microsoft Hyper-V: [reserve, weight, limit]
- Public clouds lack service level agreement on latency
 - □ EC2, Compute Engine, Azure: #VCPUs

Current platforms provision resources, not latency!

Challenges

- > Support real-time applications in a virtualized environment.
 - □ Latency guarantees to tasks running in virtual machines (VMs).
 - □ Real-time performance isolation between VMs.
- Multi-level real-time performance provisioning
 - □ Virtualization within a host
 - □ Communication and I/O
 - □ Cloud resource management

RT-Xen

- Real-time schedulers in the Xen hypervisor
 - □ Real-time performance for tasks running in virtual machines (VMs).
 - □ Real-time performance isolation between VMs.
 - Experimentation of real-time scheduling at the hypervisor level.
- Build on compositional scheduling theory
 - □ VMs specify resource interfaces.
 - □ Real-time guarantees to tasks in VMs.
- Incorporated in **Xen 4.5** as the **rtds** scheduler.
 - □ rtds: Real-Time Deferrable Server

Xen Virtualization Architecture

- > Xen: type-I, baremetal hypervisor
 - □ Domain-0: drivers, tool stack to control VMs.
 - ☐ Guest Domain: para-virtualized or fully virtualized OS.
- Xen scheduler
 - ☐ Guest OS runs on VCPUs.
 - Xen schedules VCPUs on PCPUs.
 - Credit scheduler: round-robin with proportional share.

Compositional Scheduling

- > Analytical real-time guarantees to tasks running in VMs.
- VM resource interfaces
 - ☐ Hides task-specific information
 - □ Multicore: a set of VCPUs each with an interface <period, budget >
 - □ Computed based on compositional scheduling analysis

Global vs. Partitioned Scheduling

- Global scheduling
 - ☐ Shared global run queue
 - □ Allow VCPU migration across cores
 - ☐ Work conserving utilize any available cores
 - Migration overhead and cache penalty
- Partitioned scheduling
 - Assign and bind VCPUs to cores
 - □ Schedule VCPUs on each core independently
 - □ Cores may idle when others have work pending
 - No migration overhead or cache penalty

Scheduling VCPU as "Servers"

Run Queues

- rt-global: all cores share one run queue with a spinlock
- rt-partition: one run queue per core

- > A run queue
 - □ holds VCPUs that are runnable (not idle)
 - divided into two parts: with budget; without budget
 - sorted by priority (DM or EDF) within each part

RT-Xen: Real-Time Scheduling in Xen

- Single-core
 RT-Xen I.0 [EMSOFT'11]
- Single-core enhanced RT-Xen I.I [RTAS'12]
- ➤ Multi-core scheduling RT-Xen 2.0 [EMSOFT'14]
- Real-time deferrable server (rtds) [Xen 4.5]

Experimental Setup

- > Hardware: Intel i7 processor, 6 cores, 3.33 GHz
 - □ Allocate I VCPU for Domain-0, pinned to PCPU 0
 - □ All guest VMs use the remaining cores
- Software
 - Xen 4.3 patched with RT-Xen
 - ☐ Guest OS: Linux patched with LITMUS
- Workload
 - □ Period tasks
 - \square Allocate tasks \rightarrow VMs

RT-Xen 2.0: Credit Scheduler

RT-Xen 2.0: Scheduling Overhead

- rt-global has extra overhead due to global lock.
- Credit has poor max overhead due to load balancing.

RT-Xen 2.0: Theory vs. Experiments

- gEDF < pEDF theoretically due to pessimistic analysis.
- gEDF > pEDF empirically, thanks to work-conserving global scheduling.

RT-Xen 2.0: Deferrable vs. Periodic

Work-conserving wins empirically!

- gEDF+DS → best real-time performance.
- This is the rtds scheduler in Xen 4.5.

RT-Xen 2.0: How about Cache?

- gEDF > pEDF for cache intensive workload.
- Benefit of global scheduling dominates migration cost.
- Shared cache mitigates cache penalty due to migration.

CPSL Cyber-Physical Systems Laboratory

Conclusion

- > Embedded system integration demands real-time virtualization.
- RT-Xen: real-time VM scheduling on multicore processors.
- Insights from experimental study.
 - □ Tradeoff between theoretical guarantees vs. real performance.
 - \square gEDF+DS \rightarrow work conserving wins empirically (Xen 4.5).
- More from RT-Xen
 - □ Inter-domain communication and network I/O. [IWQoS'13][RTAS'15]
 - □ Cache-aware compositional scheduling. [RTSS'13]

Conclusion

- > Embedded system integration demands real-time virtualization.
- RT-Xen: real-time VM scheduling on multicore processors.

How to turn RT-Xen into a certifiable, hard real-time platform?

- More from RT-Xen
 - □ Inter-domain communication and network I/O. [IWQoS'13][RTAS'15]
 - □ Cache-aware compositional scheduling. [RTSS'13]

Check out RT-Xen

RT-Xen

| I'm Feeling Lucky | Real-Time Virtualization

https://sites.google.com/site/realtimexen/

Incorporated in Xen 4.5 as the rtds scheduler

Contributors

- Washington University in St. Louis: Sisu Xi, Chris Gill
- University of Pennsylvania: Meng Xu, Insup Lee, Linh Phan, Oleg Sokolsky