
Towards Certifiable Resource Sharing in

Safety-Critical Multi-Core Real-Time Systems

Benny Akesson

Czech Technical University in Prague

Jan Nowotsch

Airbus Group Innovations

→Embedded systems get increasingly complex
– Increasingly complex applications (more functionality)

– Growing number of applications integrated in a device

– More applications execute concurrently

– Requires increased system performance without increasing power

→The resulting complex platforms
– are (heterogeneous) multi-core systems to improve

performance/power ratio

– Resources in the system are shared to reduce cost

2

Trends in Embedded Systems

→Some applications have real-time requirements
– WCET must be smaller than deadline

→Applications have different design assurance levels (DAL)
– DAL level determines required certification effort [1,2]
– High DAL levels are very expensive and time-consuming to certify

→Commercial-of-the-shelf (COTS) platforms are used
– Custom hardware not cost-effective with low volumes

3

Safety-Critical Systems

[1] DO-178C Software Considerations in Airborne Systems and Equipment Certification, 2012

[2] DO-254 Design Assurance Guidance for Airborne Electronic Hardware, 2000

A B C D E DAL

→Increased integration implies mixed-criticality systems
– Applications with different DALs share resources

→Resource sharing creates interference between applications
– Makes it difficult to derive WCET of applications
– Highest DAL of applications must be used unless there is isolation [1]

→Both temporal and spatial isolation is required [1]
– Applications must be ”sufficiently” independent

4

Resource Sharing

[1] DO-178C Software Considerations in Airborne Systems and Equipment Certification, 2012

→Isolation on single core is typically provided by operating system
– E.g. based on ARINC-653 specification [3]
– ”Robust” partitions created for sets of applications

→Temporal isolation using time-division multiplexing (TDM)
– TDM non-work-conserving (nwc) to eliminate interference
– Application-level scheduling within a partition

5

 Single-Core Isolation

[3] ARINC Specification 653, 2010

Partition 1

Application A

Application B

Partition 2

Application C

Application D

Partition 1 Partition 1 Partition 2 Partition 2 Partition 1 TDM

A B A B

6

Problem Statement

How to ensure that applications sharing resources are isolated and that WCET of
applications can be computed in certifiable mixed-criticality multi-core systems?

This presentation discusses this problem in a survey-like manner

7

Presentation Outline

COTS Analysis Methods

Introduction

Time-Predictable Hardware

Airbus isWCET Approach

Conclusions

→CompSoC is a platform for real-time applications [4]
– For independent app. development, verification, and execution

→Components of tiled architecture [5]
– Processor tiles with MicroBlaze cores
– Æthereal network-on-chip
– Memory tiles with SRAM or SDRAM
– Peripheral tiles

→Platform implementation in VHDL [6]

8

CompSoC Platform

[4] http://compsoc.eu

[5] Goossens, Kees, et al. "Virtual execution platforms for mixed-time-criticality systems: The compsoc architecture and design flow." SIGBED Review 10.3, 2013.

[6] Goossens, Sven, et al. "The CompSOC design flow for virtual execution platforms." Proceedings of the 10th FPGAworld Conference. ACM, 2013.

→All resources are shared [7]
– NWC TDM partition scheduling on CPU (ARINC-653)
– NWC pipelined TDM flit scheduling in network-on-chip
– NWC TDM trans. scheduling or any scheduler + delay for DRAM

→Performance analysis
– Data-flow models for all software/hardware components
– WCET for all tasks/transactions

9

CompSoC

[7] Akesson, Benny, et al. "Composability and predictability for independent application development,

verification, and execution." Chapter in Multiprocessor System-on-Chip, 2011.

→Extremely robust partitioning [7]
– Not a single cycle interference from other partitions
– Similar to PREcision-Timed Architectures (PRET) [8]

10

Extreme Partitioning

[7] Akesson, Benny, et al. "Composability and predictability for independent application development, verification, and execution." Chapter in Multiprocessor System-

on-Chip, 2011.

[8] Edwards, Stephen A., and Edward A. Lee. "The case for the precision timed (PRET) machine." Proc. DAC, 2007.

→It is possible to design time-predictable multi-core platforms
– Extremely robust partitioning
– WCET for all tasks/transactions, but
– Average-case performance suffer

→Application domain is practically restricted to COTS platforms
– Hardware is given
– Transfering technology is very difficult
– Most customers are oriented towards average-case performance

11

Summary

12

Presentation Outline

COTS Analysis Methods

Introduction

Time-Predictable Hardware

Airbus isWCET Approach

Conclusions

→Analytically modeling a COTS platform is very difficult
– Hardware is optimized for average-case performance
– No detailed documentation of implementation
– Limited possibilities for measurements during validation
– Difficult to guarantee correctness / conservativeness of model

→Often pessimistic assumptions about memory controller:
– Unknown size of reorder buffer in memory controller [9]
– Unknown work-conserving memory scheduler [10,11,12]
– Bounds still useful?

13

Modeling COTS Platforms

[9] Kim, Hyoseung, et al. "Bounding memory interference delay in COTS-based multi-core systems." Proc. RTAS, 2014.

[10] Dasari, Dakshina, et al. "Response time analysis of COTS-based multicores considering the contention on the shared memory bus." Proc. TRUSTCOM, 2011.

[11] Nowotsch, Jan, et al. "Multi-core interference-sensitive wcet analysis leveraging runtime resource capacity enforcement." Proc. ECRTS, 2014.

[12] Schliecker, Simon, and Rolf Ernst. "Real-time performance analysis of multiprocessor systems with shared memory." ACM Transactions on Embedded Computing

Systems (TECS) 10.2 (2010): 22.

→There is much work on bounding interference between tasks
– Vary w.r.t. task model and (task/transaction) schedulers

→Common assumptions
– Single outstanding transaction
– No or partitioned caches
– Different path of worst-case memory accesses (WMA)

→Abstraction of memory accesses
– Number of memory accesses per task / block [11,13]
– Minimum / maximum requests in interval [12] (for self / others)

14

Interference Analysis

[11] Nowotsch, Jan, et al. "Multi-core interference-sensitive wcet analysis leveraging runtime resource capacity enforcement." Proc. ECRTS, 2014.

[12] Schliecker, Simon, and Rolf Ernst. "Real-time performance analysis of multiprocessor systems with shared memory." ACM Transactions on Embedded Computing

Systems (TECS) 10.2 (2010): 22.

[13] Yun, Heechul, et al. "Memory access control in multiprocessor for real-time systems with mixed criticality." Proc. ECRTS, 2012.

→Throttling popular to control memory interference [11,14,15,16]
– Can be implemented at operating system level
– Relies on good performance monitoring counters

→Basic idea:
1. Assign memory access budgets
2. Monitor number of memory accesses using performance counters
3. Enforce budget by suspending tasks with depleted budgets

→Optionally, there are mechanisms for slack distribution
– Observed slack [15] or proven slack [16]

15

Memory Throttling

[11] Nowotsch, Jan, et al. "Multi-core interference-sensitive wcet analysis leveraging runtime resource capacity enforcement." Proc. ECRTS, 2014.

[14] Inam, Rafia, et al. "The Multi-Resource Server for predictable execution on multi-core platforms." Proc. RTAS, 2014.

[15] Yun, Heechul, et al. "Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms." Proc. RTAS, 2013.

[16] Nowotsch, Jan, and Michael Paulitsch. "Quality of service capabilities for hard real-time applications on multi-core processors." Proc. RTNS, 2013.

→New scheduling theory on top of memory throttling [13,17]
– Respecting both memory budget and CPU scheduling

→Theory requires knowledge about memory access times
– Commonly done by assumption
– Sometimes by measurements on platform [11,13]
– Never done using validated analytical model

16

Schedulability Analysis

[11] Nowotsch, Jan, et al. "Multi-core interference-sensitive wcet analysis leveraging runtime resource capacity enforcement." Proc. ECRTS, 2014.

[13] Yun, Heechul, et al. "Memory access control in multiprocessor for real-time systems with mixed criticality." Proc. ECRTS, 2012.

[17] Behnam, Moris, et al. "Multi-core composability in the face of memory-bus contention." ACM SIGBED Review 10.3 (2013): 35-42.

→Measurement-based approaches offer pragmatic solution

→Possible to use measurement-based WCET tools
– E.g. RapiTime
– Measure your way around things you cannot model

→Stressing shared resources
– Possible using synthetic resource stressing tasks [18,19]

17

Measurement-based Approaches

[18] Nowotsch, Jan, and Michael Paulitsch. "Leveraging multi-core computing architectures in avionics." Dependable Computing Conference (EDCC), 2012 Ninth

European. IEEE, 2012.

[19] Radojković, Petar, et al. "On the evaluation of the impact of shared resources in multithreaded COTS processors in time-critical environments." ACM

Transactions on Architecture and Code Optimization (TACO) 8.4 (2012): 34.

18

Presentation Outline

COTS Analysis Methods

Introduction

Time-Predictable Hardware

Airbus isWCET Approach

Conclusions

→Setup
– Freescale P4080 multi-core platform

– SYSGO Pike OS operating system

– AbsInt aiT static analysis tool

– EEMBC Automotive benchmarks

→Approach [11]
– Individual core-local and interference analyses

– Separation of timing and resource analyses

19

isWCET Analysis I

[11] Nowotsch, Jan, et al. "Multi-core interference-sensitive wcet analysis leveraging runtime resource capacity enforcement." Proc. ECRTS, 2014.

→Core-local Analysis

20

isWCET Analysis II

time resources

→Core-local Analysis

21

isWCET Analysis II

time resources time resources time resources

…

→Core-local Analysis

→Interference Analysis

22

isWCET Analysis II

time resources time resources time resources

…

→Comparison to intuitive approaches

(minimum tmin and maximum tmax contention)

23

Evaluation

Benchmark Tmin[ms] Tmax[ms] Tis[ms]

cacheb 114 1996 493

iirflt 60 136 116

rspeed 233 4468 612

a2time 29 524 231

bitmnp 154 262 225

tblook 122 449 289

matrix 21 35 32

aifftr 11 11 11

→Dynamic adaptation of resource budgets based on actual

system progress

→Progress determined through monitoring

24

Run-time Adaption

[16] Nowotsch, Jan, and Michael Paulitsch. "Quality of service capabilities for hard real-time applications on multi-core processors." Proc. RTNS, 2013.

25

Presentation Outline

COTS Analysis Methods

Introduction

Time-Predictable Hardware

Airbus isWCET Approach

Conclusions

→Increased integration drives transition to multi-core platforms
– Resource sharing causes interference between applications
– Nightmare w.r.t. certification
– Problem to isolate sharing applications and safely determine WCET

→Time-Predictable Platforms have been demonstrated
– Extremely robust partitioning and easy to determine WCET
– Difficult to get commercial uptake of technology

→Analysis of COTS systems active research topic
– Difficult to model analytically due to lacking openness
– Community is finding the right models/abstractions
– Most models remain unvalidated
– Alternative is to use measurement-based techniques

 26

Conclusions

