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Transition to Multi-Core 

multi-core benefits: 
reduced space and weight 

reduced power and cooling 

increased computation 

… and more 

We have a large body of certified single-core hard real-time software  

Existing software will be migrated en-masse, 
in addition to new  software. 

There are  

serious risks 
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• “Shared access to cache or other memory areas, operating systems / supervisors /  hypervisors 
that can control and affect all the applications executing on all the cores, and ‘coherency fabrics / 
coherency modules / interconnects’ that control all the data transfers between the MCP cores, 
memory and the peripheral devices of the MCP via a shared bus.  
 

• Many of these features … were not designed or verified for compliance with the current 
airborne software or hardware guidance material.  
 

• It may therefore be difficult or even impossible to fully characterize and verify all the possible 
effects of these features, which may include unintended and unexpected behavior.” 

      - CAST 32 

Inter-core Interferences 
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• Lockheed Space Systems ported  

some applications to a Freescale 

P4080 testbed. Tests indicated that  

• Recorded max delay (blue bar) of a task 

increased 6x, when 7 cores were used, but 

not when 8 cores were used. This makes 

the determination of worst case 

configuration difficult. 

• Using SCE technology (red bar) 

– Recorded max delay of a task increased 

monotonically when more cores were used. 

– WCET(8)  > WCET(j), j = 1 to 7; and 

increased less than 2x. 

Critical Software can be Slowed 

by up to 6X if Uncontrolled  

Source: Lockheed Space Systems HWIL Testbed 
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• Currently SCE core isolation technology is software based. The isolation overhead 
increases when more cores are used. 

• Hardware design support can greatly reduce the overhead but requires cooperation from 
chip makers. 

Testbed Results 
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• DO178 C was developed for single core chips under the assumption that a 
acceptably tight bound on a task T’s execution time (WCET) can be 
determined and reused for different task sets in a given platform.    

• This constant WCET assumption makes schedulability analysis, timing 
tests and timing certification tractable.  Without it, any change to any task 
mandates the recalculation of all other tasks’ WCETs.  

• In a multicore chip, as is, physically  concurrent sharing of  globally 
available DRAM banks, memory bus, last level cache,  and I/O channels 
invalidates the traditional constant WCET assumption. 

• SCE generalizes the constant WCET assumption in the form of constant 
WCET(m) assumption, where m is the maximal number of cores that will 
be used in a multicore chip.  SCE allows the reuse of DO178 C as is with 
WCET(1), a.k.a, WCET, replaced by WCET(m).         
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DO178C and the WCET Assumption 
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CAST-32 Position 

DO-178B and DO-178C only address software on single-core processor 

No existing material to adapt development and verification on MCPs  

In MCPs, applications on separate cores may cause interference with each other 

CAST-32/position 
g.i 

1 MCP Interference Channels 

2 Shared Memory and Cache 

3 Planning and Verification of Resource Usage 

4 Software Verification 

position d 

position e 

position f 

position h 
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SCE Overview 

a framework of OS-level techniques 

 

implementable on commercial MCP platforms 

 

for strict partitioning of shared resources 
 

so that each core can be treated as a single-core chip 

 

from a schedulability analysis  

 

and certification perspective 

SCE 
single-core 
equivalence 

is 
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CAST-32 Coverage 

SCE 
single-core 
equivalence 

and 

MCP Interference Channels 

CAST-32 

“Applications running on different cores of a MCP do not 
execute independently from each other because the 
cores are sharing resources” 

CAST-32/position d.i 

1 

Within SCE we have: 
• Identified and analyzed the main interference channels 
• Provided a mitigation strategy for each channel 
• Exported a set of equivalent, independent single-cores 

“The applicant has conducted a functional interference 
analysis […] and has designed, implemented and verified 
a means of mitigation for each interference channel” 

CAST-32/position d.ii 
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CAST-32 Coverage 

SCE 
single-core 
equivalence 

and 

Shared Memory and Cache 

CAST-32 

“WCET of the software applications hosted on one core 
can increase greatly due to repeated cache accesses by 
the processes hosted on the other core” 

CAST-32/position e.i 

2 

SCE provides: 
• Per-process cache usage profiling mechanism 
• Deterministic shared cache allocation strategy 
• No inter- and intra-core interference on cache space 

“The applicants have to describe their strategy for 
managing and verifying cache usage” and “to conduct 
analyses of worst-case effect of shared cache” 

CAST-32/position e.ii 
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CAST-32 Coverage 

SCE 
single-core 
equivalence 

and 

Planning and Verification of Resource Usage 

CAST-32 

“If the overall available resources of the MCP are 
exceeded by the combined resource demand, the effects 
on the software may be unpredictable” 

CAST-32/position f.i 
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SCE provides: 
• Per-core memory bandwidth regulation mechanism 
• Guarantee of operation below saturation point 
• Serialization of I/O transactions 

“The applicants have to describe their plans to allocate, 
manage and measure the use of the interconnect used 
by applications and peripherals” 

CAST-32/position f.ii 
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CAST-32 Coverage 

SCE 
single-core 
equivalence 

and 

Software Verification 

CAST-32 

“Existing guidance and standard industry practice for 
the integration and verification of hardware platforms, 
OSes and applications is the field of IMA systems” 

CAST-32/position h.i 

4 

In summary, using SCE: 
• Perform per-core modular analysis and certification 
• Reuse consolidated software and engineering processes 
• Use an IMA approach on each equivalent single-core 
• Verification of SCE implementation is an open challenge  

“A similar approach […] would be effective to the 
verification of software on an MCP” since it “would not 
impose any additional burden on the industry” 

CAST-32/position h.i 
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SCE Tech. 1 – Colored Lockdown 
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SCE Tech. 2 – MemGuard 
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SCE Tech. 2 – Palloc 
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SCE Tech. 4 – I/O Scheduling 
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SCE: Engineering Perspective 

SCE dedicates  
𝟏

𝒎
 of shared resources to each core. 

WCET of tasks directly depends on the number of active cores m. 

To certify for up to m active cores, find WCET(m) for each task 

WCET(m) can be derived from WCET calculated in isolation 

 WCET(𝑚) = WCET(1) + 𝜇 ⋅ 𝐿𝑠𝑖𝑧𝑒
𝑚

𝐵𝑊𝑚𝑖𝑛
−

1

𝐵𝑊𝑚𝑎𝑥
 

(*) Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, Heechul Yun, WCET(m) Estimation in Multi-Core 
Systems using Single Core Equivalence. In Proceedings of the 27th Euromicro Conference on Real-Time Systems 
(ECRTS 2015), Lund, Sweden. To appear2015 

* 
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Consider 
multi-core 
platform 

Determine 
relevant 

parameters 

Profile 
workload and 

define 
partitions 

Collect 
experimental 

measurements 

Compute 
WCET(m) 

Check per-
partition 

schedulability 

Generate 
partition and 
I/O schedule 

SCE: Engineering Perspective 

SCE 
single-core 
equivalence 

the 

workflow 
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Our LLC Management Model: 
 

• Consider the LLC as a 2D array of lines 

• Assign arbitrary sets of blocks to tasks 

Sets 

Ways 

 ✔ Addresses all the sources of interference 

 ✔ Converts the LLC cache in a deterministic object 

   at the granularity of a single memory page 

 ✔ Allows the use of legacy code 

 ✔ Provides flexibility in cache assignment 

SCE: Colored Lockdown 

(*) Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, Rodolfo Pellizzoni, Real-Time 
Cache Management Framework for Multi-Core Architectures. In Proceedings of the 19th IEEE International 
Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS 2013), Philadelphia, PA, USA. 

* 
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• Aims at using the cache 
deterministically 

• Has to deal with limited cache size 

• Run task in sandbox, analyze memory 
accesses 

• Find frequently accessed (hot) memory 
regions 

1. Profiling 

✔ 

✔ 

✔ ✔ 

✔ 

Sets 

Ways 

Colored Lockdown: Profiling 
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• Leverages on the virtual → physical 
translation layer 

• Used to move page mapping across 
sets (up/down) 

• Transparent to the programmer 

• Transparent to the application 

2. Coloring 

Sets 

Ways 

Colored Lockdown: Coloring 
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• Uses architecture-specific 
lockdown features 

• Used to allocate pages on 
selected ways (left/right) 

• Can be implemented at OS-level 

3. Lockdown 

Sets 

Ways 

Colored Lockdown: Lockdown 
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• DO 178C can be used for multicore, only if each core in a multicore chip is logically 
equivalent to a single core chip (SCE). SCE enables to modularly certify software 
one core at a time using DO 178C.   

• Technologies to implement the SCE framework are open to innovation. However, 
violation of SCE objective means that we would allow the modification of 
applications in one core to “decertify” the applications in other cores.   

• Challenges in SCE technology development and certification 

– Currently SCE addresses the isolation challenges.  

• Intercore communication support needs to be completed. 

• How to use more than one core for big applications needs to be 
completed. 

– SCE certification is architecture dependent. Validated hardware abstraction 
required. 

– SCE integrates with low level RTOS operation and is harder to verify than 
application level software. But only needs to be done once for a platform. 

 

Summary 
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This Talk 

• Focus on DRAM and memory controller 

• Present SW mechanisms for timing predictability 

28 
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Memory Controller 



Why Important? 

• Memory is becoming a bottleneck 

• Performance is very poor in the worst-case 
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Core1 Core2 Core3 Core4 

DRAM 

Memory Controller 



How Serious? 
• Synthetic worst-case experiments: 
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Background: DRAM Organization 

L3 

DRAM DIMM 
 
 
 
 
 
 
 

 
Memory Controller (MC) 

 

Bank 
4 

Bank 
3 

Bank 
2 

Bank 
1 

Core1 Core2 Core3 Core4 

• Have multiple banks 
– 8 ~ 16 banks per DIMM 

• Different banks can be 
accessed in parallel 
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Most-cases 
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Mess 

 

• Performance = ?? 
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Worst-case 

• 1bank b/w  
– Less than peak b/w 

– How much? 

Slow 

L3 

DRAM DIMM 
 
 
 
 
 
 
 

 
Memory Controller (MC) 

 

Bank 
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Bank 
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Bank 
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Bank 
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Core1 Core2 Core3 Core4 
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Outline 

• Introduction 

• DRAM Background 

• Control mechanisms 

– PALLOC: Space (bank) partitioning * 

– MemGuard: Bandwidth partitioning **  

• Conclusion 

34 

(*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator 
for Performance Isolation on Multicore Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and 
Applications Symposium (RTAS), IEEE, 2014 

(**) Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory Bandwidth 
Reservation System for Efficient Performance Isolation in Multi-core Platforms. IEEE Intl. Conference on Real-Time 
and Embedded Technology and Applications Symposium (RTAS), IEEE, 2013. 



Problem 
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PALLOC 
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Performance Slowdown 

• PB: DRAM bank partitioning only;  
• PB+PC: DRAM bank and Cache partitioning 
• Bank (and cache) partitioning improves isolation, but far from ideal 

– Due to Memory bus bandwidth contention (next technique) 
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Problem 

• Banks can be accessed in parallel 

• But all banks share a memory bus 

• Memory bandwidth << CPU 
demands 
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MemGuard 
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• Goal: guarantee minimum memory b/w for each core 
• How: b/w reservation 

Operating System 
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Reservation 
• Idea 

– Reserve per-core memory bandwidth via the OS scheduler  
• Use h/w PMC to monitor memory request rate 
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Impact of Reservation 
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Conclusion 

• Multicore certification is a huge challenge 

 

• Main memory is an important interference channel 
– Bank (space) conflict  

– Bandwidth contention 

 

• Proposed control mechanisms 
– PALLOC: DRAM bank (space) control 

– MemGuard: DRAM bandwidth (time) control 

Improved performance isolation 
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https://github.com/heechul/palloc
https://github.com/heechul/memguard
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The MCP IMA Challenge  

• “Authorities are not currently aware of any 
MCP hardware and software implementations 
… in the way … currently ensured for the 
applications of an IMA on a single core 

processor (SCP).“                                  in CAST 32 

• “This paper may be extended in future to 
address MCPs with more than two active cores 
and MCP IMA implementations.”       in CAST 32 

 



Migration: I/O Conflicts 

– Zero-partition 

    : a special-purpose ‘I/O partition’ 

 

– Migrating multiple single-core 
IMAs to a multicore system. 

• Multiple rate groups 

• Shared I/O channel conflicts 

• Synchronizing challenge 

z 

z 

Z: zero-partition 

core k 

core k+1 

z 
z 

z 



All Things are Putting Together 

Cache 
management 

Memory 
management 

IMA partition parameters  
determined 

integrated 

IMA partitions scheduling 
with conflict-free I/O 



(Cache locking) 
+ 

Processing Partition 
(memory bandwidth 

regulated) 
+ 

(Cache Unlocking) 

Generating IMA Partition Scheduling  
for Conflict-free I/O       
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. . . 
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. .
 . 

. .
 . 

. .
 . 

. .
 . 

I/O core Core 1 Core 2 Control (schedule) 
access to I/O devices 

Processing partition 

Cache locking 
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Memory 
bandwidth 
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+ 
Processing 

+ 
Cache unlocking 

One I/O at A time 



Idea – How to Solve 

Bottleneck-first approach 

 

Jung-Eun Kim, Man-Ki Yoon, Sungjin Im, Richard Bradford and Lui Sha, “Optimized Scheduling of Multi-IMA Partitions with Exclusive Region for Synchronized Real-Time Multi-Core System,” in 
Proceedings of the 16th ACM/IEEE Design, Automation, and Test in Europe (DATE 2013), pp. 970-975, Mar. 2013. 

Jung-Eun Kim, Man-Ki Yoon, Richard Bradford and Lui Sha, “Integrated Modular Avionics (IMA) Partition Scheduling with Conflict-Free I/O for Multicore Avionics Systems,” in Proceedings of 
the 38th IEEE Computer Software and Applications Conference (COMPSAC 2014), Jul. 2014. 

Allocate first 
Strictly periodic  processing partitions  

Search space reduced 

Allocate 
Semi-periodic I/O partitions 



Result of a Practical Example 
1 I/O Core + 2 Processing cores; Periods (core_1: 40,200,100,100,100,40; core_2: 60, 40, 100); LCM=600 

(magnified) 

I/O core 
(core 0) 

core 1 

core 2 

D. Locke, L. Lucas and J. Goodenough, “Generic avionics software specification,” Software Engineering Institute, Pittsburgh, Pennsylvania,1990, CMU/SEI-90-

TR-008. 



SCE Summary 
• DO 178C can be used for multicore, only if each core in a multicore chip is 

logically equivalent to a single core chip (SCE).  That is, intercore interferences can 
be certifiably bounded and for all core workload configurations.  

• SCE Technologies is open to innovation. However, violation of SCE objective 
means that we would allow the modification of applications in one core to 
“decertify” the applications in other cores.   

• Challenges in SCE technology development and certification 

– Currently SCE addresses the isolation challenges.  

• Intercore communication support needs to be completed. 

• How to use more than one core for big applications needs to be 
completed. 

– SCE certification is chip architecture dependent, requires hardware primitives 
currently found in some Freescale chips.  

– Validated hardware abstraction required. 

– Verification and certification of SCE design & implementation are required. 

 



SCE: Engineering Perspective 
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