

Sponsored in part by:

Single Core Equivalence Framework (SCE)
For Certifiable Multicore Avionics

http://rtsl-edge.cs.illinois.edu/SCE/

a collaboration of:

Presenters: Lui Sha, Marco Caccamo, Heechul Yun, Renato Mancuso, Jung-Eun Kim

With contributions from
Rodolfo Pellizzoni and Man Ki Yoon
Russell Kegley, Jonathan Preston and Dennis Perlman
Greg Arundale and Richard Bradford

Outline

1. Overview

2. CAST32 and SCE

3. DRAM, Bus and Cache management

4. IMA and I/O management

5. SCE Summary

SCE
single-core
equivalence

2

Transition to Multi-Core

multi-core benefits:
reduced space and weight

reduced power and cooling

increased computation

… and more

We have a large body of certified single-core hard real-time software

Existing software will be migrated en-masse,
in addition to new software.

There are

serious risks

3

• “Shared access to cache or other memory areas, operating systems / supervisors / hypervisors
that can control and affect all the applications executing on all the cores, and ‘coherency fabrics /
coherency modules / interconnects’ that control all the data transfers between the MCP cores,
memory and the peripheral devices of the MCP via a shared bus.

• Many of these features … were not designed or verified for compliance with the current
airborne software or hardware guidance material.

• It may therefore be difficult or even impossible to fully characterize and verify all the possible
effects of these features, which may include unintended and unexpected behavior.”

 - CAST 32

Inter-core Interferences

4

• Lockheed Space Systems ported

some applications to a Freescale

P4080 testbed. Tests indicated that

• Recorded max delay (blue bar) of a task

increased 6x, when 7 cores were used, but

not when 8 cores were used. This makes

the determination of worst case

configuration difficult.

• Using SCE technology (red bar)

– Recorded max delay of a task increased

monotonically when more cores were used.

– WCET(8) > WCET(j), j = 1 to 7; and

increased less than 2x.

Critical Software can be Slowed

by up to 6X if Uncontrolled

Source: Lockheed Space Systems HWIL Testbed

5

• Currently SCE core isolation technology is software based. The isolation overhead
increases when more cores are used.

• Hardware design support can greatly reduce the overhead but requires cooperation from
chip makers.

Testbed Results

5

• DO178 C was developed for single core chips under the assumption that a
acceptably tight bound on a task T’s execution time (WCET) can be
determined and reused for different task sets in a given platform.

• This constant WCET assumption makes schedulability analysis, timing
tests and timing certification tractable. Without it, any change to any task
mandates the recalculation of all other tasks’ WCETs.

• In a multicore chip, as is, physically concurrent sharing of globally
available DRAM banks, memory bus, last level cache, and I/O channels
invalidates the traditional constant WCET assumption.

• SCE generalizes the constant WCET assumption in the form of constant
WCET(m) assumption, where m is the maximal number of cores that will
be used in a multicore chip. SCE allows the reuse of DO178 C as is with
WCET(1), a.k.a, WCET, replaced by WCET(m).

6

DO178C and the WCET Assumption

6

Sponsored in part by:

Single Core Equivalence Framework (SCE)
For Certifiable Multicore Avionics

SCE and CAST-32

a collaboration of:

Presenter: Marco Caccamo

CAST-32 Position

DO-178B and DO-178C only address software on single-core processor

No existing material to adapt development and verification on MCPs

In MCPs, applications on separate cores may cause interference with each other

CAST-32/position
g.i

1 MCP Interference Channels

2 Shared Memory and Cache

3 Planning and Verification of Resource Usage

4 Software Verification

position d

position e

position f

position h

8

SCE Overview

a framework of OS-level techniques

implementable on commercial MCP platforms

for strict partitioning of shared resources

so that each core can be treated as a single-core chip

from a schedulability analysis

and certification perspective

SCE
single-core
equivalence

is

9

CAST-32 Coverage

SCE
single-core
equivalence

and

MCP Interference Channels

CAST-32

“Applications running on different cores of a MCP do not
execute independently from each other because the
cores are sharing resources”

CAST-32/position d.i

1

Within SCE we have:
• Identified and analyzed the main interference channels
• Provided a mitigation strategy for each channel
• Exported a set of equivalent, independent single-cores

“The applicant has conducted a functional interference
analysis […] and has designed, implemented and verified
a means of mitigation for each interference channel”

CAST-32/position d.ii

10

CAST-32 Coverage

SCE
single-core
equivalence

and

Shared Memory and Cache

CAST-32

“WCET of the software applications hosted on one core
can increase greatly due to repeated cache accesses by
the processes hosted on the other core”

CAST-32/position e.i

2

SCE provides:
• Per-process cache usage profiling mechanism
• Deterministic shared cache allocation strategy
• No inter- and intra-core interference on cache space

“The applicants have to describe their strategy for
managing and verifying cache usage” and “to conduct
analyses of worst-case effect of shared cache”

CAST-32/position e.ii

11

CAST-32 Coverage

SCE
single-core
equivalence

and

Planning and Verification of Resource Usage

CAST-32

“If the overall available resources of the MCP are
exceeded by the combined resource demand, the effects
on the software may be unpredictable”

CAST-32/position f.i

3

SCE provides:
• Per-core memory bandwidth regulation mechanism
• Guarantee of operation below saturation point
• Serialization of I/O transactions

“The applicants have to describe their plans to allocate,
manage and measure the use of the interconnect used
by applications and peripherals”

CAST-32/position f.ii

12

CAST-32 Coverage

SCE
single-core
equivalence

and

Software Verification

CAST-32

“Existing guidance and standard industry practice for
the integration and verification of hardware platforms,
OSes and applications is the field of IMA systems”

CAST-32/position h.i

4

In summary, using SCE:
• Perform per-core modular analysis and certification
• Reuse consolidated software and engineering processes
• Use an IMA approach on each equivalent single-core
• Verification of SCE implementation is an open challenge

“A similar approach […] would be effective to the
verification of software on an MCP” since it “would not
impose any additional burden on the industry”

CAST-32/position h.i

13

Sponsored in part by:

Single Core Equivalence Framework (SCE)
For Certifiable Multicore Avionics

Tech. Overview and Cache Management

a collaboration of:

Presenter: Renato Mancuso

Core 1 Core m

...

Interconnect

DRAM
I/O

ch. 1
I/O

ch. n

...

Shared Cache

I/O
Core

m Application Cores
+

1 I/O Core

Shared
Last Level Cache

Shared resources regulated by SCE Over-provisioned resources

Memory Controller

Shared Resources Regulated by SCE

Shared
Interconnect

Shared I/O
Peripherals

Shared DRAM
memory

Shared Memory
Controller

15

SCE Tech. 1 – Colored Lockdown

m Application Cores
+

1 I/O Core

Per-Core
Assigned Cache

Shared
Interconnect

Shared I/O
Peripherals

Core 1

... I/O
ch. 1

I/O
ch. n

...

Assigned
Cache

I/O
Core

Core m

Assigned
Cache

...

deconflict

Interconnect

DRAM

Memory Controller
Shared DRAM

memory

Shared Memory
Controller

Shared resources regulated by SCE Over-provisioned resources

16

SCE Tech. 2 – MemGuard

m Application Cores
+

1 I/O Core

Per-Core
Assigned Cache

Core 1

... I/O
ch. 1

I/O
ch. n

...

Assigned
Cache

I/O
Core

Core m

Assigned
Cache

...

Interconnect

DRAM

Shared resources regulated by SCE Over-provisioned resources

MC/1 MC/m

deconflict

...

Shared I/O
Peripherals

Shared DRAM
memory

Per-Core
Assigned Mem.

Bandwidth

Shared
Interconnect

17

SCE Tech. 2 – Palloc

m Application Cores
+

1 I/O Core

Per-Core
Assigned Cache

Core 1

... I/O
ch. 1

I/O
ch. n

...

Assigned
Cache

I/O
Core

Core m

Assigned
Cache

...

Interconnect

DRAM/1

Shared resources regulated by SCE Over-provisioned resources

MC/1 MC/m

deconflict

...

Shared I/O
Peripherals

Per-Core DRAM
banks

Per-Core
Assigned Mem.

Bandwidth

Shared
Interconnect

DRAM/m ...

18

SCE Tech. 4 – I/O Scheduling

m Application Cores
+

1 I/O Core

Per-Core
Assigned Cache

Core 1

... I/O
ch. 1

I/O
ch. n

...

Assigned
Cache

I/O
Core

Core m

Assigned
Cache

...

Interconnect

DRAM/1

Shared resources regulated by SCE Over-provisioned resources

MC/1 MC/m ...

Serialized I/O
Transactions

Per-Core DRAM
banks

Per-Core
Assigned Mem.

Bandwidth

Shared
Interconnect

DRAM/m ...
deconflict

19

SCE: Engineering Perspective

SCE dedicates
𝟏

𝒎
 of shared resources to each core.

WCET of tasks directly depends on the number of active cores m.

To certify for up to m active cores, find WCET(m) for each task

WCET(m) can be derived from WCET calculated in isolation

 WCET(𝑚) = WCET(1) + 𝜇 ⋅ 𝐿𝑠𝑖𝑧𝑒
𝑚

𝐵𝑊𝑚𝑖𝑛
−

1

𝐵𝑊𝑚𝑎𝑥

(*) Renato Mancuso, Rodolfo Pellizzoni, Marco Caccamo, Lui Sha, Heechul Yun, WCET(m) Estimation in Multi-Core
Systems using Single Core Equivalence. In Proceedings of the 27th Euromicro Conference on Real-Time Systems
(ECRTS 2015), Lund, Sweden. To appear2015

*

20

Consider
multi-core
platform

Determine
relevant

parameters

Profile
workload and

define
partitions

Collect
experimental

measurements

Compute
WCET(m)

Check per-
partition

schedulability

Generate
partition and
I/O schedule

SCE: Engineering Perspective

SCE
single-core
equivalence

the

workflow

21

Our LLC Management Model:

• Consider the LLC as a 2D array of lines

• Assign arbitrary sets of blocks to tasks

Sets

Ways

 ✔ Addresses all the sources of interference

 ✔ Converts the LLC cache in a deterministic object

 at the granularity of a single memory page

 ✔ Allows the use of legacy code

 ✔ Provides flexibility in cache assignment

SCE: Colored Lockdown

(*) Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, Rodolfo Pellizzoni, Real-Time
Cache Management Framework for Multi-Core Architectures. In Proceedings of the 19th IEEE International
Conference on Real-Time and Embedded Technology and Applications Symposium (RTAS 2013), Philadelphia, PA, USA.

*

22

• Aims at using the cache
deterministically

• Has to deal with limited cache size

• Run task in sandbox, analyze memory
accesses

• Find frequently accessed (hot) memory
regions

1. Profiling

✔

✔

✔ ✔

✔

Sets

Ways

Colored Lockdown: Profiling

23

• Leverages on the virtual → physical
translation layer

• Used to move page mapping across
sets (up/down)

• Transparent to the programmer

• Transparent to the application

2. Coloring

Sets

Ways

Colored Lockdown: Coloring

24

• Uses architecture-specific
lockdown features

• Used to allocate pages on
selected ways (left/right)

• Can be implemented at OS-level

3. Lockdown

Sets

Ways

Colored Lockdown: Lockdown

25

• DO 178C can be used for multicore, only if each core in a multicore chip is logically
equivalent to a single core chip (SCE). SCE enables to modularly certify software
one core at a time using DO 178C.

• Technologies to implement the SCE framework are open to innovation. However,
violation of SCE objective means that we would allow the modification of
applications in one core to “decertify” the applications in other cores.

• Challenges in SCE technology development and certification

– Currently SCE addresses the isolation challenges.

• Intercore communication support needs to be completed.

• How to use more than one core for big applications needs to be
completed.

– SCE certification is architecture dependent. Validated hardware abstraction
required.

– SCE integrates with low level RTOS operation and is harder to verify than
application level software. But only needs to be done once for a platform.

Summary

26

Sponsored in part by:

Single Core Equivalence Framework (SCE)
For Certifiable Multicore Avionics

Memory Mnagement

a collaboration of:

Presenter: Heechul Yun

This Talk

• Focus on DRAM and memory controller

• Present SW mechanisms for timing predictability

28

Core1 Core2 Core3 Core4

DRAM

Memory Controller

Why Important?

• Memory is becoming a bottleneck

• Performance is very poor in the worst-case

29

Core1 Core2 Core3 Core4

DRAM

Memory Controller

How Serious?
• Synthetic worst-case experiments:

30

8.0

33.5

45.8

0

5

10

15

20

25

30

35

40

45

50

ARM
Cortex A15

Intel
Nahelem

Intel
Haswell

solo

+ 1 co-runner

+ 2 co-runners

+ 3 co-runners

DRAM

Core1 Core2 Core3 Core4

bench
N

o
rm

a
liz

ed
 e

xe
cu

ti
o

n
 t

im
e

co-runner(s)

Up to 45.8X
slowdown

Background: DRAM Organization

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Have multiple banks
– 8 ~ 16 banks per DIMM

• Different banks can be
accessed in parallel

31

Most-cases

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

Mess

• Performance = ??

32

Worst-case

• 1bank b/w
– Less than peak b/w

– How much?

Slow

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

33

Outline

• Introduction

• DRAM Background

• Control mechanisms

– PALLOC: Space (bank) partitioning *

– MemGuard: Bandwidth partitioning **

• Conclusion

34

(*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. PALLOC: DRAM Bank-Aware Memory Allocator
for Performance Isolation on Multicore Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), IEEE, 2014

(**) Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory Bandwidth
Reservation System for Efficient Performance Isolation in Multi-core Platforms. IEEE Intl. Conference on Real-Time
and Embedded Technology and Applications Symposium (RTAS), IEEE, 2013.

Problem

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• OS/hypervisor is
unaware of DRAM
banks

• Memory pages are
spread all over
multiple banks

????
Unpredictable
Bank Conflict

OS/Hypervisor

35

DRAM DIMM

PALLOC

CPC

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Aware of DRAM
mapping

• Each page can be
allocated to a
desired DRAM
bank

Flexible Allocation
Policy

OS/Hypervisor

36

PALLOC

L3

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core1 Core2 Core3 Core4

• Private banking

– Allocate pages
on certain
exclusively
assigned banks

Better
Performance

Isolation

37

Performance Slowdown

• PB: DRAM bank partitioning only;
• PB+PC: DRAM bank and Cache partitioning
• Bank (and cache) partitioning improves isolation, but far from ideal

– Due to Memory bus bandwidth contention (next technique)

38

Sl
o

w
d

o
w

n
 r

a
ti

o

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

buddy PB PB+PC

DRAM

Core1 Core2 Core3 Core4

bench co-runner(s)

Problem

• Banks can be accessed in parallel

• But all banks share a memory bus

• Memory bandwidth << CPU
demands

39

Memory bandwidth
contention

Shared Cache

DRAM DIMM

Memory Controller (MC)

Bank
4

Bank
3

Bank
2

Bank
1

Core
1

Core
2

Core
3

Core
4

Shared memory bus

MemGuard

40

• Goal: guarantee minimum memory b/w for each core
• How: b/w reservation

Operating System

Core1

Core2

Core3

Core4

PMC PMC PMC PMC

DRAM DIMM

MemGuard

Multicore Processor
Memory Controller

BW
Regulator

BW
Regulator

BW
Regulator

BW
Regulator

0.6GB/s 0.2GB/s 0.2GB/s 0.2GB/s

Reclaim Manager

Reservation
• Idea

– Reserve per-core memory bandwidth via the OS scheduler
• Use h/w PMC to monitor memory request rate

41

1ms 2ms 0

Schedule a RT idle task

Suspend the RT idle task

Budget

Core

activity

2
1

computation memory fetch

as long as sum budgets <= guaranteed

memory bandwidth, queuing delay in the
memory controller is small

Impact of Reservation

42

LL
C

 m
is

se
s/

m
s

Time (ms) Time (ms)

W/o MemGuard MemGuard (1GB/s)

LL
C

 m
is

se
s/

m
s

Conclusion

• Multicore certification is a huge challenge

• Main memory is an important interference channel
– Bank (space) conflict

– Bandwidth contention

• Proposed control mechanisms
– PALLOC: DRAM bank (space) control

– MemGuard: DRAM bandwidth (time) control

Improved performance isolation

43

https://github.com/heechul/palloc
https://github.com/heechul/memguard

Sponsored in part by:

Single Core Equivalence Framework (SCE)
For Certifiable Multicore Avionics

IMA & I/O Management

a collaboration of:

Presenter: Jung-Eun Kim

The MCP IMA Challenge

• “Authorities are not currently aware of any
MCP hardware and software implementations
… in the way … currently ensured for the
applications of an IMA on a single core

processor (SCP).“ in CAST 32

• “This paper may be extended in future to
address MCPs with more than two active cores
and MCP IMA implementations.” in CAST 32

Migration: I/O Conflicts

– Zero-partition

 : a special-purpose ‘I/O partition’

– Migrating multiple single-core
IMAs to a multicore system.

• Multiple rate groups

• Shared I/O channel conflicts

• Synchronizing challenge

z

z

Z: zero-partition

core k

core k+1

z
z

z

All Things are Putting Together

Cache
management

Memory
management

IMA partition parameters
determined

integrated

IMA partitions scheduling
with conflict-free I/O

(Cache locking)
+

Processing Partition
(memory bandwidth

regulated)
+

(Cache Unlocking)

Generating IMA Partition Scheduling
for Conflict-free I/O

Input

Output

. . .

Input

Output

Processing Partition

Input

Output

Processing Partition

. .
 .

. .
 .

. .
 .

. .
 .

I/O core Core 1 Core 2 Control (schedule)
access to I/O devices

Processing partition

Cache locking
+

Memory
bandwidth
regulation

+
Processing

+
Cache unlocking

One I/O at A time

Idea – How to Solve

Bottleneck-first approach

Jung-Eun Kim, Man-Ki Yoon, Sungjin Im, Richard Bradford and Lui Sha, “Optimized Scheduling of Multi-IMA Partitions with Exclusive Region for Synchronized Real-Time Multi-Core System,” in
Proceedings of the 16th ACM/IEEE Design, Automation, and Test in Europe (DATE 2013), pp. 970-975, Mar. 2013.

Jung-Eun Kim, Man-Ki Yoon, Richard Bradford and Lui Sha, “Integrated Modular Avionics (IMA) Partition Scheduling with Conflict-Free I/O for Multicore Avionics Systems,” in Proceedings of
the 38th IEEE Computer Software and Applications Conference (COMPSAC 2014), Jul. 2014.

Allocate first
Strictly periodic processing partitions

Search space reduced

Allocate
Semi-periodic I/O partitions

Result of a Practical Example
1 I/O Core + 2 Processing cores; Periods (core_1: 40,200,100,100,100,40; core_2: 60, 40, 100); LCM=600

(magnified)

I/O core
(core 0)

core 1

core 2

D. Locke, L. Lucas and J. Goodenough, “Generic avionics software specification,” Software Engineering Institute, Pittsburgh, Pennsylvania,1990, CMU/SEI-90-

TR-008.

SCE Summary
• DO 178C can be used for multicore, only if each core in a multicore chip is

logically equivalent to a single core chip (SCE). That is, intercore interferences can
be certifiably bounded and for all core workload configurations.

• SCE Technologies is open to innovation. However, violation of SCE objective
means that we would allow the modification of applications in one core to
“decertify” the applications in other cores.

• Challenges in SCE technology development and certification

– Currently SCE addresses the isolation challenges.

• Intercore communication support needs to be completed.

• How to use more than one core for big applications needs to be
completed.

– SCE certification is chip architecture dependent, requires hardware primitives
currently found in some Freescale chips.

– Validated hardware abstraction required.

– Verification and certification of SCE design & implementation are required.

SCE: Engineering Perspective

52

SCE
single-core
equivalence

and

IMA

SCE: Engineering Perspective

53

SCE
single-core
equivalence

and

IMA

