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Outline 

• Motivation for MC2. 

• Basic MC2 design. 

» Per-level scheduling and schedulability 

guarantees. 

• MC2 with shared hardware management. 

» Cache and memory bank partitioning (and 

sharing). 

» Isolating the OS. 

» Complexities such as shared libraries. 

• Future research directions. 
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Original Driving Problem 
Joint Work with Northrop Grumman Corp. 

• Goal of this work: 

» To practically resolve the                                        
“one out of m” multicore                                       
problem, especially w.r.t.                                      
avionics: 
– When using an m-core platform in a safety-critical  

domain, analysis pessimism can be so great, the   
capacity of the “additional” m  1 is entirely negated. 

 

» We are attempting to combine two approaches: 
– Using mixed-criticality analysis that enables less critical 

components to be provisioned less pessimistically. 

– Managing hardware resources, as appropriate. 

Image source: http://www.as.northropgrumman.com/products/nucasx47b/assets/lgm_UCAS_3_0911.jpg  
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Starting Assumptions 

• Modest core count (e.g., 2-8). 

» Quad-core in avionics would be a tremendous 

innovation. 
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Starting Assumptions 

• Modest core count (e.g., 2-8). 

• Modest number of criticality levels (e.g., 2-5). 

» 2 may be too constraining 

»  isn’t practically interesting. 

» These levels may not necessarily match           

DO-178B/C. 
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Starting Assumptions 

• Modest core count (e.g., 2-8). 

• Modest number of criticality levels (e.g., 2-5). 

• Statically prioritize criticality levels. 

» Schemes that dynamically mix levels may be 

problematic in practice. 

– Note: This is done in much theoretical work on mixed 

criticality scheduling. 

» Also, practitioners tend to favor simple resource 

sharing schemes. 
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Starting Assumptions 

• Modest core count (e.g., 2-8). 

• Modest number of criticality levels (e.g., 2-5). 

• Statically prioritize criticality levels. 

Main motivation: To develop a framework 

that allows interesting design tradeoffs 

to be investigated that is reasonably 

plausible from an avionics point of view. 

A Non-Goal: Developing a framework 

that could really be used in avionics today. 
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Outline 

• Motivation for MC2. 

• Basic MC2 design. 

» Per-level scheduling and schedulability 

guarantees. 

• MC2 with shared hardware management. 

» Cache and memory bank partitioning (and 

sharing). 

» Isolating the OS. 

» Complexities such as shared libraries. 

• Future research directions. 
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Basic MC2 Design 

• We assume four criticality levels, A-D. 

» Originally, we assumed five, like in DO-178B/C. 

• We statically prioritize higher levels over 

lower ones. 

• We assume: 

» Levels A & B require HRT guarantees. 

» Level C requires SRT guarantees in the form of 

bounded deadline tardiness. 

» Level D is non-RT. 

» All tasks are implicit-deadline periodic/sporadic. 
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MC2 Architecture 

CE CE CE CE 
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MC2 Architecture 

CE CE CE CE 

EDF/RM EDF/RM EDF/RM EDF/RM 

G-EDF 

Best Effort 

Level A 

Level B 

Level C 

Level D 

Core 0 Core 1 Core 2 Core 3 

higher 

(static) 

priority 

lower 

(static) 

priority 

Level A: Partitioned scheduling. 

Time-triggered Cyclic Executive 

scheduler on each processor. 
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MC2 Architecture 

CE CE CE CE 

EDF/RM EDF/RM EDF/RM EDF/RM 

G-EDF 

Best Effort 

Level A 

Level B 

Level C 

Level D 

Core 0 Core 1 Core 2 Core 3 

higher 

(static) 

priority 

lower 

(static) 

priority 

Level B: Partitioned scheduling. 

Either Earliest-Deadline-First or 

Rate-Monotonic scheduler on 

each processor. 
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MC2 Architecture 

CE CE CE CE 

EDF/RM EDF/RM EDF/RM EDF/RM 

G-EDF 

Best Effort 

Level A 

Level B 

Level C 

Level D 

Core 0 Core 1 Core 2 Core 3 

higher 

(static) 

priority 

lower 

(static) 

priority 

Level C: Global scheduling using either 

Earliest-Deadline-First or some other 

“EDF-like” scheduler. 
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MC2 Architecture 

CE CE CE CE 

EDF/RM EDF/RM EDF/RM EDF/RM 

G-EDF 

Best Effort 

Level A 

Level B 

Level C 

Level D 

Core 0 Core 1 Core 2 Core 3 

higher 

(static) 

priority 

lower 

(static) 

priority 

Level D: Global background scheduling. 
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MC2 Architecture 

CE CE CE CE 

EDF/RM EDF/RM EDF/RM EDF/RM 

G-EDF 

Best Effort 

Level A 

Level B 

Level C 

Level D 

Core 0 Core 1 Core 2 Core 3 

higher 

(static) 
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lower 
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Rationale 

• Experimental research at UNC has shown 

that partitioned schedulers are best for HRT 

and global schedulers are best for SRT. 

• This design enables many interesting 

tradeoffs to be explored in a setting with 

several criticality levels (not just two): 

» Table-driven vs. priority scheduling. 

» Partitioned vs. global scheduling. 

» HRT vs. SRT.  
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Nuances 

• Can either enforce execution budgets at 

each level or not. 

• Slack shifting can be used to reallocate 

unused processing time. 

• Level C can be provisioned either on a 

worst- or average-case basis. 

» So, response times can be bounded either in the 

worst case or in expectation. 

• Overload can be dealt with at Level C by 

scheduling in a virtual time domain. 
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Main Limitations 
As of Now 

• Haven’t yet considered support for 

» synchronization (either critical sections or 

precedence constraints), or 

» dynamic workload changes. 
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Checking Schedulability 
Back to the “One of out m” Problem… 

• We use mixed-criticality schedulability 

analysis as proposed by Vestal [RTSS ’07]. 

• Each task has an execution cost specified at 

each criticality level (A-D). 

» Costs at higher levels are (typically) larger. 

• Example: 

T.eA = 20, T.eB = 12, T.eC = 5, … 

• Rationale: Will use more pessimistic analysis 

at high levels, more optimistic at low levels. 
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Checking Schedulability 
Back to the “One of out m” Problem… 

• We use mixed-criticality schedulability 

analysis as proposed by Vestal [RTSS ’07]. 

• Each task has an execution cost specified at 

each criticality level (A-D). 

» Costs at higher Levels are (typically) larger. 

• The task system is correct at Level X iff all 

Level-X tasks meet their timing requirements 

assuming all tasks have Level-X execution 

costs. 

 

Some “weirdness” here: Not just one system 

anymore, but four: the Level-A system, 

Level-B,… 
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Outline 

• Motivation for MC2. 

• Basic MC2 design. 

» Per-level scheduling and schedulability 

guarantees. 

• MC2 with shared hardware management. 

» Cache and memory bank partitioning (and 

sharing). 

» Isolating the OS. 

» Complexities such as shared libraries. 

• Future research directions. 
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Hardware Platform 

• Freescale i.MX 6Quad                                          
1 GHz ARM®Cortex™-A9                           
processor. 

• Caches: 
» 32 KB L1 I-cache per core. 

» 32 KB L1 D-cache per core.  

» 1 MB shared L2 cache. 
– Cache line size =32 B, 2048 Sets, 16 Ways. 

• 1 GB DDR3 SDRAM up to 533 MHz memory. 
» 8 Banks, each 128 MB. 
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Cache Bits 

     [15:12]  [0010] 

Cache Partitioning (of the Shared L2) 
Option 1: Set Partitioning, i.e., Page Coloring 
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Can Combine these Approaches 
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Address Decoding 

Cache Index 

Bank Interleaving on 

Bank Index 

 
Bank Interleaving off 

Bank Index 

 

[14:12] 

[15:12] 

[29:27] 

Current Prototype: Turn interleaving 

off.  Give dedicated banks to Levels A 

and B.  Let Level C share banks with 

statically allocated OS code and data. 
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Overall Hardware Allocation Strategy 

 

CPU 3 

Level A & B 
4 Colors 

8 Ways 8 Ways 

 

DRAM 

Bank 0 

OS 

 

DRAM 

Bank 1 

OS 

 

DRAM 

Bank 2 

Level C 

 

DRAM 

Bank 3 

Level C 

 

DRAM 

Bank 4 

CPU 0 

A & B 

 

DRAM 

Bank 5 

CPU 1 

A & B 

 

DRAM 

Bank 6 

CPU 2 

A & B 

 

DRAM 

Bank 7 

CPU 3 

A & B 

LLC (L2)  

CPU 2 

Level A & B 

 

CPU 1 

Level A & B 

 

CPU 0 

Level A & B 

 

 

 

 

Level C 

and OS 
4 Colors 

4 Colors 

4 Colors 



Jim Anderson 29 CMAS, Apr 2015 

Current Implementation Status 
MC2 is Implemented as a LITMUSRT Plugin 

• We support both set- and way-based 

partitioning and DRAM partitioning. 

» For set-based, we re-color (almost) all task 

pages before task execution. 

» Current limitations: 

– Each task has a signal handling page (which should 

rarely be accessed) that is not colored. 

– We don’t color shared pages (but can handle shared 

libraries through static linking). 

– OS is isolated w.r.t. DRAM except for dynamically 

allocated pages. 

– We are ignoring Level D for now. 
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Importance of Controlling L2 Interference 

Measured memory 

access latency of a 

synthetic task on a 

loaded system, with 

(RED) and without 

(BLUE) L2 isolation,  

as a function of 

working set size. 
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Importance of Controlling DRAM 

Bank Interference 

Measured worst-case 

execution time of a 

synthetic task on a 

loaded system, with 

(RED) and without 

(BLUE) bank isolation,  

as a function of the size 

(number of ways and 

colors) of the allocated 

L2 area.  Bank isolation 

really matters if working set doesn’t fit within the L2. 
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Importance of Controlling OS Interference 

Measured worst-case 

execution times of two 

synthetic tasks, with 

(RED) and without 

(BLUE) OS isolation,  

where one task performs 

repeated system calls 

and the other doesn’t. 
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Interesting Tradeoffs Exist w.r.t. Allocating 

L2 Areas 

Measured worst-case 

execution time of a 

synthetic task on a 

loaded system, with 

L2 isolation, as a 

function of the size 

(number of ways and 

colors) of the allocated 

L2 area. 
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Major Principles 

• Solving the “one out of m” problem requires: 

» Provisioning less pessimistically where 

appropriate. 

» Enabling hardware isolation, but only where 

needed and where possible. 

– Lower criticality tasks might actually benefit from 

sharing. 

– It’s OK if some hardware resources are not managed, 

as long as interferences due to such resources are 

accounted for in analysis. 
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Outline 

• Motivation for MC2. 

• Basic MC2 design. 

» Per-level scheduling and schedulability 

guarantees. 

• MC2 with shared hardware management. 

» Cache and memory bank partitioning (and 

sharing). 

» Isolating the OS. 

» Complexities such as shared libraries. 

• Future research directions. 
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Future Work 

• Our future plans include: 

» Devising (near) optimal algorithms for allocating L2 

areas. 
o Such algorithms must account for different requirements at 

different criticality levels. 

» Determining whether we can fully isolate the OS 

(even w.r.t. dynamically allocated DRAM data). 
o May potentially integrate with PALLOC [Yun et al., RTAS ‘14]. 

» Enabling dynamic adaptations and synchronization. 

» Extending page coloring to fully deal with shared 

pages. 
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MC2 Papers 
(All papers available at http://www.cs.unc.edu/~anderson/papers.html) 

• J. Anderson, S. Baruah, and B. Brandenburg, “Multicore Operating-System 

Support for Mixed Criticality,” Proc. of the Workshop on Mixed Criticality: Roadmap 

to Evolving UAV Certification, 2009. 
» A “precursor” paper that discusses some of the design decisions underlying MC2. 

• M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos, “Mixed 

Criticality Real-Time Scheduling for Multicore Systems,” Proc. of the 7th IEEE 

International Conf. on Embedded Software and Systems, 2010. 
» Focus is on schedulability, i.e., how to check timing constraints at each level and “shift” slack. 

• J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, “RTOS Support 

for Multicore Mixed-Criticality Systems,” Proc. of the 18th RTAS, 2012. 
» Focus is on RTOS design, i.e., how to reduce the impact of RTOS-related overheads on high-

criticality tasks due to low-criticality tasks. 

• B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making Shared Caches More 

Predictable on Multicore Platforms,” Proc. of the 25th ECRTS, 2013. 
» Adds shared cache management to a two-level variant of MC2.  The approach in today’s talk is 

different. 

• J. Erickson, N. Kim, and J. Anderson, “Recovering from Overload in Multicore 

Mixed-Criticality Systems,” Proc. of the 29th IPDPS, 2015. 
» Adds virtual-time-based scheduling to Level C. 
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Thanks! 

• Questions? 


