
Jim Anderson 1 CMAS, Apr 2015

Adding Cache and Memory

Management to the MC2 (Mixed

Criticality on Multicore) Framework

Jim Anderson

University of North Carolina at Chapel Hill

Jim Anderson 2 CMAS, Apr 2015

Outline

• Motivation for MC2.

• Basic MC2 design.

» Per-level scheduling and schedulability

guarantees.

• MC2 with shared hardware management.

» Cache and memory bank partitioning (and

sharing).

» Isolating the OS.

» Complexities such as shared libraries.

• Future research directions.

Jim Anderson 3 CMAS, Apr 2015

Original Driving Problem
Joint Work with Northrop Grumman Corp.

• Goal of this work:

» To practically resolve the
“one out of m” multicore
problem, especially w.r.t.
avionics:
– When using an m-core platform in a safety-critical

domain, analysis pessimism can be so great, the
capacity of the “additional” m  1 is entirely negated.

» We are attempting to combine two approaches:
– Using mixed-criticality analysis that enables less critical

components to be provisioned less pessimistically.

– Managing hardware resources, as appropriate.

Image source: http://www.as.northropgrumman.com/products/nucasx47b/assets/lgm_UCAS_3_0911.jpg

Jim Anderson 4 CMAS, Apr 2015

Starting Assumptions

• Modest core count (e.g., 2-8).

» Quad-core in avionics would be a tremendous

innovation.

Jim Anderson 5 CMAS, Apr 2015

Starting Assumptions

• Modest core count (e.g., 2-8).

• Modest number of criticality levels (e.g., 2-5).

» 2 may be too constraining

»  isn’t practically interesting.

» These levels may not necessarily match

DO-178B/C.

Jim Anderson 6 CMAS, Apr 2015

Starting Assumptions

• Modest core count (e.g., 2-8).

• Modest number of criticality levels (e.g., 2-5).

• Statically prioritize criticality levels.

» Schemes that dynamically mix levels may be

problematic in practice.

– Note: This is done in much theoretical work on mixed

criticality scheduling.

» Also, practitioners tend to favor simple resource

sharing schemes.

Jim Anderson 7 CMAS, Apr 2015

Starting Assumptions

• Modest core count (e.g., 2-8).

• Modest number of criticality levels (e.g., 2-5).

• Statically prioritize criticality levels.

Main motivation: To develop a framework

that allows interesting design tradeoffs

to be investigated that is reasonably

plausible from an avionics point of view.

A Non-Goal: Developing a framework

that could really be used in avionics today.

Jim Anderson 8 CMAS, Apr 2015

Outline

• Motivation for MC2.

• Basic MC2 design.

» Per-level scheduling and schedulability

guarantees.

• MC2 with shared hardware management.

» Cache and memory bank partitioning (and

sharing).

» Isolating the OS.

» Complexities such as shared libraries.

• Future research directions.

Jim Anderson 9 CMAS, Apr 2015

Basic MC2 Design

• We assume four criticality levels, A-D.

» Originally, we assumed five, like in DO-178B/C.

• We statically prioritize higher levels over

lower ones.

• We assume:

» Levels A & B require HRT guarantees.

» Level C requires SRT guarantees in the form of

bounded deadline tardiness.

» Level D is non-RT.

» All tasks are implicit-deadline periodic/sporadic.

Jim Anderson 10 CMAS, Apr 2015

MC2 Architecture

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Core 0 Core 1 Core 2 Core 3

higher

(static)

priority

lower

(static)

priority

Jim Anderson 11 CMAS, Apr 2015

MC2 Architecture

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Core 0 Core 1 Core 2 Core 3

higher

(static)

priority

lower

(static)

priority

Level A: Partitioned scheduling.

Time-triggered Cyclic Executive

scheduler on each processor.

Jim Anderson 12 CMAS, Apr 2015

MC2 Architecture

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Core 0 Core 1 Core 2 Core 3

higher

(static)

priority

lower

(static)

priority

Level B: Partitioned scheduling.

Either Earliest-Deadline-First or

Rate-Monotonic scheduler on

each processor.

Jim Anderson 13 CMAS, Apr 2015

MC2 Architecture

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Core 0 Core 1 Core 2 Core 3

higher

(static)

priority

lower

(static)

priority

Level C: Global scheduling using either

Earliest-Deadline-First or some other

“EDF-like” scheduler.

Jim Anderson 14 CMAS, Apr 2015

MC2 Architecture

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Core 0 Core 1 Core 2 Core 3

higher

(static)

priority

lower

(static)

priority

Level D: Global background scheduling.

Jim Anderson 15 CMAS, Apr 2015

MC2 Architecture

CE CE CE CE

EDF/RM EDF/RM EDF/RM EDF/RM

G-EDF

Best Effort

Level A

Level B

Level C

Level D

Core 0 Core 1 Core 2 Core 3

higher

(static)

priority

lower

(static)

priority

Jim Anderson 16 CMAS, Apr 2015

Rationale

• Experimental research at UNC has shown

that partitioned schedulers are best for HRT

and global schedulers are best for SRT.

• This design enables many interesting

tradeoffs to be explored in a setting with

several criticality levels (not just two):

» Table-driven vs. priority scheduling.

» Partitioned vs. global scheduling.

» HRT vs. SRT.

Jim Anderson 17 CMAS, Apr 2015

Nuances

• Can either enforce execution budgets at

each level or not.

• Slack shifting can be used to reallocate

unused processing time.

• Level C can be provisioned either on a

worst- or average-case basis.

» So, response times can be bounded either in the

worst case or in expectation.

• Overload can be dealt with at Level C by

scheduling in a virtual time domain.

Jim Anderson 18 CMAS, Apr 2015

Main Limitations
As of Now

• Haven’t yet considered support for

» synchronization (either critical sections or

precedence constraints), or

» dynamic workload changes.

Jim Anderson 19 CMAS, Apr 2015

Checking Schedulability
Back to the “One of out m” Problem…

• We use mixed-criticality schedulability

analysis as proposed by Vestal [RTSS ’07].

• Each task has an execution cost specified at

each criticality level (A-D).

» Costs at higher levels are (typically) larger.

• Example:

T.eA = 20, T.eB = 12, T.eC = 5, …

• Rationale: Will use more pessimistic analysis

at high levels, more optimistic at low levels.

Jim Anderson 20 CMAS, Apr 2015

Checking Schedulability
Back to the “One of out m” Problem…

• We use mixed-criticality schedulability

analysis as proposed by Vestal [RTSS ’07].

• Each task has an execution cost specified at

each criticality level (A-D).

» Costs at higher Levels are (typically) larger.

• The task system is correct at Level X iff all

Level-X tasks meet their timing requirements

assuming all tasks have Level-X execution

costs.

Some “weirdness” here: Not just one system

anymore, but four: the Level-A system,

Level-B,…

Jim Anderson 21 CMAS, Apr 2015

Outline

• Motivation for MC2.

• Basic MC2 design.

» Per-level scheduling and schedulability

guarantees.

• MC2 with shared hardware management.

» Cache and memory bank partitioning (and

sharing).

» Isolating the OS.

» Complexities such as shared libraries.

• Future research directions.

Jim Anderson 22 CMAS, Apr 2015

Hardware Platform

• Freescale i.MX 6Quad
1 GHz ARM®Cortex™-A9
processor.

• Caches:
» 32 KB L1 I-cache per core.

» 32 KB L1 D-cache per core.

» 1 MB shared L2 cache.
– Cache line size =32 B, 2048 Sets, 16 Ways.

• 1 GB DDR3 SDRAM up to 533 MHz memory.
» 8 Banks, each 128 MB.

CPU 0
…

L1-I

32KB

L1-D

32KB

CPU 3

L1-I

32KB

L1-D

32KB

L2

1MB

DRAM

Bank 0

128 MB

DRAM

Bank 7

128 MB

…

Jim Anderson 23 CMAS, Apr 2015

Way

0

Way

1

Way

2 …
Way

15

Color

0

Color

1

Color

2

Color

15
…

Address Bits [31:0]

Cache Bits

 [15:12] [0010]

Cache Partitioning (of the Shared L2)
Option 1: Set Partitioning, i.e., Page Coloring

Jim Anderson 24 CMAS, Apr 2015

Way

0

Way

1

Way

2
… Way

15

Color

0

Color

1

Color

2

Color

15

…

L2 Cache Lockdown Register

[0000 0000 0000 0100]
Lockdown bits [15:0]

CPU 0 Lockdown Register

CPU 0
CPU 0

CPU 0 CPU 0

Cache Partitioning
Option 2: Way Partitioning

Jim Anderson 25 CMAS, Apr 2015

Way

0

Way

1

Way

2
… Way

15

Color

0

Color

1

Color

2

Color

15

…

Can Combine these Approaches

Jim Anderson 26 CMAS, Apr 2015

DRAM Banks

Bank

DRAM

R
o

w
 D

e
c
o

d
e

r

Column Decoder

Row Buffer

Data Bus

Address

Jim Anderson 27 CMAS, Apr 2015

Address Decoding

Cache Index

Bank Interleaving on

Bank Index

Bank Interleaving off

Bank Index

[14:12]

[15:12]

[29:27]

Current Prototype: Turn interleaving

off. Give dedicated banks to Levels A

and B. Let Level C share banks with

statically allocated OS code and data.

Jim Anderson 28 CMAS, Apr 2015

Overall Hardware Allocation Strategy

CPU 3

Level A & B
4 Colors

8 Ways 8 Ways

DRAM

Bank 0

OS

DRAM

Bank 1

OS

DRAM

Bank 2

Level C

DRAM

Bank 3

Level C

DRAM

Bank 4

CPU 0

A & B

DRAM

Bank 5

CPU 1

A & B

DRAM

Bank 6

CPU 2

A & B

DRAM

Bank 7

CPU 3

A & B

LLC (L2)

CPU 2

Level A & B

CPU 1

Level A & B

CPU 0

Level A & B

Level C

and OS
4 Colors

4 Colors

4 Colors

Jim Anderson 29 CMAS, Apr 2015

Current Implementation Status
MC2 is Implemented as a LITMUSRT Plugin

• We support both set- and way-based

partitioning and DRAM partitioning.

» For set-based, we re-color (almost) all task

pages before task execution.

» Current limitations:

– Each task has a signal handling page (which should

rarely be accessed) that is not colored.

– We don’t color shared pages (but can handle shared

libraries through static linking).

– OS is isolated w.r.t. DRAM except for dynamically

allocated pages.

– We are ignoring Level D for now.

Jim Anderson 30 CMAS, Apr 2015

Importance of Controlling L2 Interference

Measured memory

access latency of a

synthetic task on a

loaded system, with

(RED) and without

(BLUE) L2 isolation,

as a function of

working set size.

Jim Anderson 31 CMAS, Apr 2015

Importance of Controlling DRAM

Bank Interference

Measured worst-case

execution time of a

synthetic task on a

loaded system, with

(RED) and without

(BLUE) bank isolation,

as a function of the size

(number of ways and

colors) of the allocated

L2 area. Bank isolation

really matters if working set doesn’t fit within the L2.

Jim Anderson 32 CMAS, Apr 2015

Importance of Controlling OS Interference

Measured worst-case

execution times of two

synthetic tasks, with

(RED) and without

(BLUE) OS isolation,

where one task performs

repeated system calls

and the other doesn’t.

Jim Anderson 33 CMAS, Apr 2015

Interesting Tradeoffs Exist w.r.t. Allocating

L2 Areas

Measured worst-case

execution time of a

synthetic task on a

loaded system, with

L2 isolation, as a

function of the size

(number of ways and

colors) of the allocated

L2 area.

Jim Anderson 34 CMAS, Apr 2015

Major Principles

• Solving the “one out of m” problem requires:

» Provisioning less pessimistically where

appropriate.

» Enabling hardware isolation, but only where

needed and where possible.

– Lower criticality tasks might actually benefit from

sharing.

– It’s OK if some hardware resources are not managed,

as long as interferences due to such resources are

accounted for in analysis.

Jim Anderson 35 CMAS, Apr 2015

Outline

• Motivation for MC2.

• Basic MC2 design.

» Per-level scheduling and schedulability

guarantees.

• MC2 with shared hardware management.

» Cache and memory bank partitioning (and

sharing).

» Isolating the OS.

» Complexities such as shared libraries.

• Future research directions.

Jim Anderson 36 CMAS, Apr 2015

Future Work

• Our future plans include:

» Devising (near) optimal algorithms for allocating L2

areas.
o Such algorithms must account for different requirements at

different criticality levels.

» Determining whether we can fully isolate the OS

(even w.r.t. dynamically allocated DRAM data).
o May potentially integrate with PALLOC [Yun et al., RTAS ‘14].

» Enabling dynamic adaptations and synchronization.

» Extending page coloring to fully deal with shared

pages.

Jim Anderson 37 CMAS, Apr 2015

MC2 Papers
(All papers available at http://www.cs.unc.edu/~anderson/papers.html)

• J. Anderson, S. Baruah, and B. Brandenburg, “Multicore Operating-System

Support for Mixed Criticality,” Proc. of the Workshop on Mixed Criticality: Roadmap

to Evolving UAV Certification, 2009.
» A “precursor” paper that discusses some of the design decisions underlying MC2.

• M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos, “Mixed

Criticality Real-Time Scheduling for Multicore Systems,” Proc. of the 7th IEEE

International Conf. on Embedded Software and Systems, 2010.
» Focus is on schedulability, i.e., how to check timing constraints at each level and “shift” slack.

• J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, “RTOS Support

for Multicore Mixed-Criticality Systems,” Proc. of the 18th RTAS, 2012.
» Focus is on RTOS design, i.e., how to reduce the impact of RTOS-related overheads on high-

criticality tasks due to low-criticality tasks.

• B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making Shared Caches More

Predictable on Multicore Platforms,” Proc. of the 25th ECRTS, 2013.
» Adds shared cache management to a two-level variant of MC2. The approach in today’s talk is

different.

• J. Erickson, N. Kim, and J. Anderson, “Recovering from Overload in Multicore

Mixed-Criticality Systems,” Proc. of the 29th IPDPS, 2015.
» Adds virtual-time-based scheduling to Level C.

Jim Anderson 38 CMAS, Apr 2015

Thanks!

• Questions?

