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The increase in execution times because of co-runners is problematic
for hard real-time systems.
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How bad is it?
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How bad is it?

[Bellosa97] Multiprocessor “The copy-rate decreases to 50% of the value in the
single CPU if only 2 memory banks are available.”

“We have clearly demonstrated the consequences of
memory preemption on a SUN E3000 server with 4
CPUs, where the execution speed of a video-
conferencing application running on a dedicated CPU
drops from 25 to 20 frames per second if the remaining
CPU demands a lot of megabytes per second (see FIG.
1.1.).

[Schonberg03] Single core +1/O  “Summarizing Measurement Results: ... We consider the
slowdown of this application as the upper bound ... For
our machine, we determine an upper bound value of
1.49.”

[Pellizzoni08]  Processor and I/O “...the interference between cache activity and 1/0
traffic generated by COTS peripherals can unpredictably
slow down a real-time task by 44%.”
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How bad is it?

[BuiO8] Single processor “the utilization increment [because of cache eviction]
can be as high as 13%”

[Pellizzoni10] dual core +1/0  “...measured a WCET increase 2.96 times for the task.”

[Fuchsen10] multicore About cache sharing: “If the data set is smaller than the

L2 cache visible to a core and the L2 cache is shared
(Intel Processor), the worst case performance loss
through the second core depends on the data set size
and is between 30% and 95% for write operations and
19% and 92% for read accesses.”

About cache coherency: “On the AMD processor, the
performance loss is 99% on small data sets and it moves
to 50% for large data sets.”

About data buses: “If the cores operate on a data set
which is so large that the caches have no effect, the
performance drops down to 50% if both cores are
active.”
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How bad is it?

[Radojkovicll] Multithreaded “We also observe that, in general, the detected
processor slowdown is quite high (up to 15.3x)”

[Nowotsch12] Multicore “...the worst-case execution time (WCET) can be
multiple times slower than the same application
running on a single core...”

“A major result demonstrated by the measurements is
the substantial impact that concurrently active devices
may have on a single devices’ performance, in terms of
storage type instructions. The influence could be of a
factor from around 1.6 for L3 SRAM and 5.1 when
accessing DDR memory.”
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How bad is it?

[Mancuso13] Multicore “Experimental results show that, in the considered
benchmarks, eliminating the interference of the last
level cache can lead up to a 250% improvement in the
execution time.”

[Ward13] Multicore “proper shared cache management can enable
significant WCET reductions; on our test platform,
observed WCETs were reduced up to almost five-fold.”

[Suzukil3] Multicore “For instance, the execution time of PS.streamcluster
is increased by 60% under the no-bank-protection
approach, but the increase is only 12% under our
combined cache and bank coloring approach. ”
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How bad is it?

[Kim14] Multicore “Figure 5(b) illustrates the response times when all
cores share the same bank partition. With bank sharing,
we observed up to 12x of response time increase in the
target platform.”

[Yel4] Multicore “As can be seen in Figure 7 (H and H+P), the cache
sensitive workload gobmk experienced a performance
gain of as much as 13% under the interference of a
heavy background workload with page coloring.”
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How bad is it?

[Nowotsch14]

%__é Software Engineering Institute

Multicore

The memory latency can increase more than 15-fold on
8-cores for a e500mc processor as witnessed by the

statement below:

“Table 1 shows the memory access latencies for read
and write operations with increasing number of

interfering cores.

TABLE 1. P4080 MEMORY ACCESS LATENCIES FOR
INCREASING NUMBER OF CONCURRENT CORES.
LATENCIES USED FOR EVALUATION ARE MARKED BOLD

Latency (cycles)
Cores 1 2 3 4
Read 41 75 171 269
Write 39 164 245 463
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How bad is it?

[Yun15a] Multicore “the difference of slowdown factors between the two
tasks could be as large as factor of two (2.2x against
1.2x)”

“As we increase 470.lbm’s assigned memory bandwidth,
however,, performance of 462.libquantum gradually
decreases; when the reserved bandwidth for 470.lbm is
2.0GB/s (i.e., 3.0GB/s aggregate bandwidth reservation),
more than 40% IPC reduction is observed due to
increased memory contention.”

“Note first that MemGuard-RO does not guarantee
performance isolation anymore as 462.libquantum is
17% slower than the baseline. It is because the 2.4GB/s
bandwidth can not be guaranteed by the given memory
system, causing additional queuing delay to the
462.libquantum.”
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How bad is it?

[Yun15c] Multicore “Without cache partitioning, a task can suffer up to
103X slowdown due to interference at the shared LLC.”

[Shal6] Multicore “Measurements we performed on a commercial
multicore platform (Freescale P4080) revealed that a
task’s WCET can increase by as much as 600 percent
when a task on one core runs with logically independent
tasks in other cores.”

[Kim16] Multicore “When validating real-time constraints on an m-core
platform, excessive analysis pessimism can effectively
negate the processing capacity of the additional m-1
cores so that only 'one core’s worth’ of capacity is
available.”

“Obs. 1. Providing LLC isolation reduced WCETs by up to
277% for the uB task and by up to 242% for the Matrix
program.”
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How bad is it?

A program can experience a large slowdown because of execution
of another program on another processor. In some cases 103X

slowdown.
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What does DO-178C say about this slowdown?
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What does DO-178C say about this slowdown?
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Wouldn’t it make sense to have a position paper that
defines suggested objectives to achieve certification of
multi-core parts used in safety-critical applications?
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Wouldn’t it make sense to have a position paper that
defines suggested objectives to achieve certification of
multi-core parts used in safety-critical applications?

Yes, the position paper CAST-32B offers that.
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Wouldn’t it make sense that academics and industry
folks in real-time systems produce a position paper as
well?
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Wouldn’t it make sense that academics and industry
folks in real-time systems produce a position paper as
well?

A position paper “Minimal Multicore Avionics
Certification Guidance” offers that.
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So everything is solved then.
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So everything is solved then.

No, these documents only provide objectives.
We also need solutions.
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But we already have many solutions. Cache coloring,
cache locking, bank coloring, memory bus monitoring
and enforcement. Isn’t that enough?
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But we already have many solutions. Cache coloring,
cache locking, bank coloring, memory bus monitoring
and enforcement. Isn’t that enough?

No, some of them use the same underlying
“knob” and they want to use it in different
ways. For example, both cache coloring and
bank coloring use the virtual-to-physical
translation mechanism.
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But we already have many solutions. Cache coloring,
cache locking, bank coloring, memory bus monitoring
and enforcement. Isn’t that enough?

No, some of them use the same underlying

“knob” and they want to use it in different

ways. For example, both cache coloring and
bank coloring use the virtual-to-physical

translation mechanism.

Use coordinated cache and bank coloring.
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How does coordinated cache and bank coloring work?

Set up the virtual-to-physical translation so
that timing isolation is achieved for both cache
and bank.
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Coordinated Cache and Bank Coloring (Simplified)

Processor 1
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Coordinated Cache and Bank Coloring (Simplified)
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Coordinated Cache and Bank Coloring (Simplified)

Processor 1
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Processor 4
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Coordinated Cache and Bank Coloring (Simplified)

Processor 1 Processor 2 Processor 3

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA

whose bitX=1 and whose bitX=1 and whose bitX=0 and
bitY=1 bitY=0 bitY=1

Memory banks

Processor 4

Cache sets for PA
whose bitX=0 and
bitY=0

Memory Bank 1 Memory Bank 2 Memory Bank 3
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
C Tagk1 > Taskd >

Procgesor 1 Processor 2 Processor 3 Processor 4

Goal: M ke sure that all memory accesses from task 1 go to leftmost cache sets and to
memory bank 1.

Shared Cache

Cache :ts for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose hitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and
bi:Y=1 bitY=0 bitY=1 bitY=0

Memory banks

Memorly Bank 1 Memory Bank 2 Memory Bank 3 Memory Bank 4
i g for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
C_Togk2 >

Processor 1

Procéssor 2

Processor 3

Processor 4

Goal: Make sure that all memory accesses from task 2 go to 2"9 leftmost cache sets and to
memory bank 2.

Shared Cache

Cache sets for PA Cache se. , for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bit (=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY::0 bitY=1 bitY=0

emory banks

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
Ta)3 > Taskd >

Processor 2 ProceBsor 3 Processor 4

Processor 1

Goal: Make sure that all memory accesses from task 3 30 to 3" leftmost cache sets and to
memory bank 3.

Shared Cache

Cache sets for PA Cache sets for PA Cache set: for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bit) =0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3

for

PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
C_Togk4 >

Procdssor 4

Processor 2 Processor 3

Processor 1

Goal: Make sure that all memory accesses from task 4 go to 4t leftmost ci che sets and to
memory bank 4.

Shared Cache

Cache sets for PA
whose bitX=0 and
bitY=1

Cache se .s for PA
whose bi X=0 and
bit\ =0

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA
whose bitX=1 and

bitY=1

Memory banks

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

MemoryBank 4
fo
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)

Processor 1 Processor 2 Processor 3

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA

whose bitX=1 and whose bitX=1 and whose bitX=0 and
bitY=1 bitY=0 bitY=1

Memory banks

Processor 4

Cache sets for PA
whose bitX=0 and
bitY=0

Memory Bank 1 Memory Bank 2 Memory Bank 3
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

Observation: Cache Partitioning ensures that memory accesses go to the correct group of
cache sets.

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

Observation: Bank Partitioning ensures that memory accesses go to the correct group of
memory banks.

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

We need to set up the virtual-to-physical address translation so that memory accesses from
each task goes to the correct group of cache sets and to the correct memory bank.

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

See paper N. Suzuki, H. Kim, D. DeNiz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar,
“Coordinated Bank and Cache Coloring for Temporal Protection of Memory Accesses,”
ICESS’13.

Memory Bank 1 Memory Bank 2 Memory Bank 3 Memory Bank 4
for for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.



Coordinated Cache and Bank Coloring (Simplified)

Processor 3

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=0 and

hitV-1

Cache sets for PA

whose bitX=1 and
hitV=-nN

Cache sets for PA

whose bitX=1 and
hitV-1

Let us now see more coordination.

Processor 4

Cache sets for PA
whose bitX=0 and

hitv=-n

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)

Processor 3

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=0 and
bitY=1

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA

whose bitX=1 and
bitY=1

Memory banks

Processor 4

Cache sets for PA
whose bitX=0 and
bitY=0

Memory Bank 1 Memory Bank 2 Memory Bank 3

for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0
and bitV=1 and bitV=0 and bitVv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0
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Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 2 Processor 3 Processor 4

al address (VA)
%! to Physical Address Translation

) address (PA)
Shared Cache

Cad .e sets fcr PA Cache s. * ;5 for PA Cache sets for PA Cache sets for PA
whcse bitX=1 and whose bitaA=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

1 Memory Bank 2 Memory Bank 3 Memory Bank 4
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

Each task needs its own group of cache sets.

But two tasks on the same processor can use the same memory bank.
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Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 2 Processor 3 Processor 4

al address (VA)
%! to Physical Address Translation

) address (PA)
Shared Cache

Cad .e sets fcr PA Cache s. * ;5 for PA Cache sets for PA Cache sets for PA
whcse bitX=1 and whose bitaA=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

1 Memory Bank 2 Memory Bank 3 Memory Bank 4
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

Since coordinated cache and bank coloring depends on task-to-processor assignment, we

need to coordinate cache coloring, bank coloring, and task-to-processor assignment.
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Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 3 Processor 4

Prlicessor 1 Processor 2

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cau .e sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whcse bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

The execution time of a task depends on how many cache sets it is

allocated. (more cache sets = less self-interference)
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Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 3 Processor 4

Prlicessor 1 Processor 2

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=1

Cau .e sets for PA
whcse bitX=1 and
bitY=1

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Schedulability test (needed for task-to-processor assignment) depends

on execution times.
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Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 3 Processor 4

Prlicessor 1 Processor 2

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=1

Cau .e sets for PA
whcse bitX=1 and
bitY=1

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Schedulability test (needed for task-to-processor assignment) depends

on the number of cache sets that a task is allocated.
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Coordinated Cache and Bank Coloring (Simplified)

Pr@cessor 1

Processor 2

Processor 3

Processor 4

Virtual address (VA)
Virtual to Physical Address Translation
Physical address (PA)

Shared Cache

Cache sets for PA
whose bitX=1 and
bitY=0

Cau .e sets for PA
whcse bitX=1 and
bitY=1

Cache sets for PA
whose bitX=0 and
bitY=1

Cache sets for PA
whose bitX=0 and
bitY=0

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

We need to coordinate cache coloring, bank coloring, and task-to-processor assignment

and integrate it with execution time dependence on the number of cache sets assigned
to each task.




How to solve the problem of coordinated cache coloring,
bank coloring, and task-to-processor assignment and
integrate it with execution time dependence on the
number of cache sets assigned to each task?
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How do you solve the problem to coordinate cache
coloring, bank coloring, and task-to-processor
assignment and integrate it with execution time
dependence on the number of cache sets assigned to
each task.

Formulate a Mixed-Integer Linear Program.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 64

© 2017 Carnegie Mellon University



How do you solve the problem to coordinate cache
coloring, bank coloring, and task-to-processor
assignment and integrate it with execution time
dependence on the number of cache sets assigned to
each task.

Formulate a Mixed-Integer Linear Program.
And solve it. See ICESS’13 paper.
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Now that we can perform memory configuration and
task-to-processor assignment and schedulability testing
in one framework, why not do more?
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Why not do it for parallel tasks? Why not model bus
contention in the schedulability test? Why not have
more fine-grained description (the mapping of each

page)?
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Why not do it for parallel tasks? Why not model bus
contention in the schedulability test? Why not have
more fine-grained description (the mapping of each

page)?

Good idea. We have done that.
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Why not do it for parallel tasks? Why not model bus
contention in the schedulability test? Why not have
more fine-grained description (the mapping of each

page)?

See B. Andersson, D. de Niz, H. Kim, M. Klein, R. Rajkumar,
“'Scheduling Constrained-Deadline Sporadic Parallel Tasks
Considering Memory Contention," available at
https://www.andrew.cmu.edu/user/banderss/manuscripts/gedf
_memory_milp/gedf _memory_milp.pdf
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Conclusions
Different mechanisms for achieving isolation are not necessarily
compatible out-of-the-box.

There is a need to coordinate different mechanisms for achieving
Isolation.

Frameworks for constraint satisfaction (e.g., MILP) are useful for
these coordinated decisions.

Future work / Open guestions
Need for a larger framework (compiler/compiler decisions on code
placement) to incorporate TLB coloring.

How to incorporate Cache locking and Intel Cache Allocation
Technology?

Dealing with cost of coordinated approaches (e.g., waste memory)
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Thanks!
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[Lampka14] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, N. Stoimenov, “A formal approach to the WCRT analysis of multicore systems

with memory contention under phase-structured task sets,” Real-Time Systems, 2014.
Main idea: Use PREM (that is a program is divided into three parts, fetch data, compute, and write-back result) and partitioned non-preemptive
scheduling. Consider the software as consisting of superblocks; a superblock has upper and lower bound on execution time and memory
accesses. For each processor core, find a function that is an upper bound on the number of memory accesses in a time interval of duration t.
For a processor core under analysis (denoted p), describe the upper bound of the number of memory accesses from other processor cores
and let us timed automaton represent the events that memory accesses are generated; this timed automaton must respect the upper bound
as mentioned. Then model the bus arbitrator as a timed automaton. And model a superblock as a timed automaton as well. Then state the
query that for all possible execution, the response time is at most certain bound. Do binary search on this upper bound. This gives us upper
bound on the response time. The paper shows that almost tight bounds can be computed.

[Ye14] Y. Ye, R. West, Z Cheng, and Y. Li, “COLORIS: A Dynamic Cache Partitioning System Using Page Color,” PACT, 2014.
Main idea: Use cache partitioning implemented in software (using the virtual-to-physical translation mechanism) and change the partitioning at
run-time (in order to support more tasks and so support changes in the memory footprint).

[Nowotsch14] J. Nowotsch, M. Paulitsch, D. Biihler, H. Theiling, S. Wegener, and M. Schmidt, “Multi-core Interference-Sensitive WCET Analysis
Leveraging Runtime Resource Capacity Enforcement,” ECRTS, 2014.
Main idea: Use static scheduling (TDMA) to schedule tasks. Assume a round-robin bus. Compute the execution times of tasks.
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[Yun15a] Heechul Yun,, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha, "Memory Bandwidth Management for Efficient
Performance Isolation in Multi-core Platforms," IEEE Transactions on Computers, 2015.
Main idea: Perform policing on the memory bus. The available bandwidth is time-varying because some memory operations are fast (e.g., row
hit) and others are slow (e.g., row miss). For soft real-time: reclaim unused memory bandwidth; for hard real-time: disable the reclamation. The
sum of bandwidth should be kept below a certain threshold (e.g., 1.2GBps); this is typically much smaller than peak bandwidth (6.4GBps in the
system considered in the article).

[Graciolo15] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frolich, and R. Pellizzoni, “A Survey on Cache Management Mechanisms for Real-
Time Embedded Systems,” ACM Computing Surveys, 2015.

[Yun15b] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems,”
ECRTS, 2015.
Main idea: Modify [Kim14] so that the model the analysis is based on allows read-prioritization and multiple outstanding memory requests.

[Yun15c] H. Yun and P. K. Valsan, “Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Processors,” OSPERT, 2015.
Main idea: Evaluate the impact of co-runners on execution times. Do this evaluation on three platforms: ARM7, ARM15, and Intel Nehalem.
Find that in some cases the execution time can increase 103 times. Even with cache partitioning, the execution time can increase 14times; this
is because of the Miss Status Holding Register (MSHR).

[Panchamukhi15] S.A. Panchamukhi and F. Mueller, “Providing Task Isolation via TLB Coloring,” RTAS, 2015.
Main idea: Use the compiler/linker to allocate code and data of each task so that when the tasks run, TLB entries of one task does not evict
TLB entries of another task.
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[Li16] Y. Li, B. Akesson, K. Lampka, and K. Goossens, “Modeling and Verification of Dynamic Command Scheduling for Real-Time Memory
Controllers,” RTAS, 2016.
Main idea: Model many of the details of the memory controller (timing specifications by JEDEC) as a timed automaton. Then describe a
network of timed automata and compute the worst-case response time of a task.

[Sha16] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni, H. Yun, R. B. Kegley, D. Periman, G. Arundale, and R. Bradford,
“Real-Time Computing on Multicore Processors,” Computer, 2016.
Main idea: A framework single-core equivalence (SCE) involving (i) cache locking, (ii) bank coloring, and (iii) memory guard (policing the
memory accesses). The memory guard makes the execution time of one task independent of the memory bus contention of other task but it
comes at the cost of low memory bandwidth (1Gbps). SCE uses an I/O partition. SCE assumes that the h/w supports cache locking and
performance monitoring counters. With SCE, the execution time of a task can increase by approximately 50% (see Figure 5) for 8 cores.

[Kim16] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J.H. Anderson, and F.D. Smith, “Attacking the One-Out-Of-m Multicore Problem by
Combining Hardware Management with Mixed-Criticality Provisioning,” RTAS, 2016.
Main idea: Use isolation mechanisms for high-criticality tasks and let low-criticality tasks share resources.

[Kim16] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J.H. Anderson, and F.D. Smith, “Attacking the One-Out-Of-m Multicore Problem by
Combining Hardware Management with Mixed-Criticality Provisioning,” RTAS, 2016.
Main idea: Use isolation mechanisms for high-criticality tasks and let low-criticality tasks share resources.

[CAST32A] Certification Authorities Software Team (CAST), Position Paper, CAST-32A, Multi-core Processors, COMPLETED November 2016
(Rev 0), Available at https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

[Sha16b] L. Sha, M. Caccamo, G. Shelton, M. Nuessen, J. P. Smith, D. Miller, R. Bradford, R. Kegley, D. Periman, J. Preston, J. W. Wlad, M.
Storr, D. DeNiz, S. Chaki, M. Klein, B. Andersson, I. Bate, A. Burns, S. Palin, S. Bak, D. Kingston, M. Clark, T. Kim, and E. Pak, “Position Paper
on Minimal Multicore Avionics Certification Guidance,” August 4, 2016.
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