Coordinating
Mechanisms for more
Predictable Memory
Accesses
Bjorn Andersson and Dionisio de Niz

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited

distribution.

Coordinating Mechanisms for more
Predictable Memory Accesses
© 2017 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

%% Software Engineering Institute ‘ Carnegie Mellon University

Copyright 2017 Carnegie Mellon University and IEEE

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS
TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any
other use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0004584

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

= — . . . Y f . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute Carnegie Mellon University April 2?' 2017 i P 2

© 2017 Carnegie Mellon University

Processor 1

Memory system

<+—P
Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
e - - Memory Accesses been approved for public release and unlimited
=== Software Engineering Institute | Carnegie Mellon University Aol 21, 2017 G oveatere

= © 2017 Carnegie Mellon University

Memory system

%__E Software Engineering Institute

Processor 1

Processor 2

time

y

Carnegie Mellon University

time

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited 4
April 21, 2017 distribution.

© 2017 Carnegie Mellon University

Memory system

%__% Software Engineering Institute

Processor 1

4

Processor 2

time

y

Carnegie Mellon University

time

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited 5
April 21, 2017 distribution.

© 2017 Carnegie Mellon University

Memory system

—:__; Software Engineering Institute

Processor 1

Processor 2

time

Carnegie Mellon University

time

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited 6
April 21, 2017 distribution.

© 2017 Carnegie Mellon University

Processor 1

l time

—

Memory system

+—>
Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - = = . . . Memory Accesses been approved for public release and unlimited
=== Software Engineering Institute | Carnegie Mellon University Aol 21, 2017 e 7

— © 2017 Carnegie Mellon University

] N

l time

—

Memory system

] I

I | time

The increase in execution times because of co-runners is problematic
for hard real-time systems.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
E=—— Software Englnee"ng |l15tltute Cameg’le Ble].loﬂ ljl].“’el’slty April 21, 2017 distribution. 8

© 2017 Carnegie Mellon University

How bad is it?

slowdown

100

10 1

[Schonberg03] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited 9

T———% Software Engineering Institute Canlegie Mellon ljl].i"el'sity April 21, 2017 distribution.
© 2017 Carnegie Mellon University

How bad is it?

slowdown

100

10 1

'

[Schonberg03] [Pellizzoni08] paper

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited 1 0
distribution.

Coordinating Mechanisms for more Predictable
Memory Accesses

== Software Engineering Institute | Carnegie Mellon University April 21, 2017
© 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

1.25 1.44 LAE

[Schonberg03] [Pellizzoni08] [Schonberg03] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 11

— © 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Schonberg03] [Pellizzoni08] [Schonberg03] [Bellosa97] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 12

— © 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Schonberg03] [Pellizzoni08] [Schonberg03] [Bellosa97] [Pakl7]

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 13

— © 2017 Carnegie Mellon University

How bad is it?

slowdown

100

[Pellizzonil0] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
- - Memory Accesses been approved for public release and unlimited
Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 14

© 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Pellizzonil0] [Nowotsch12] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 15

— © 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Pellizzoni1l0] [Nowotsch12] [Shal6] paper
[Mancusol7]

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 16

— © 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Pellizzoni1l0] [Nowotsch12] [Shal6] [Kim14] paper
[Mancusol7]

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 17

© 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Nowotsch14] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
= - - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 18

— © 2017 Carnegie Mellon University

How bad is it?

slowdown

100 +

[Nowotsch14] [Radojkovic11] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 19

© 2017 Carnegie Mellon University

How bad is it?

slowdown

100

10

[Nowotsch14] [Radojkovicll] [Yun15c] paper

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 20

© 2017 Carnegie Mellon University

How bad is it?

[Bellosa97] Multiprocessor “The copy-rate decreases to 50% of the value in the
single CPU if only 2 memory banks are available.”

“We have clearly demonstrated the consequences of
memory preemption on a SUN E3000 server with 4
CPUs, where the execution speed of a video-
conferencing application running on a dedicated CPU
drops from 25 to 20 frames per second if the remaining
CPU demands a lot of megabytes per second (see FIG.
1.1.).

[Schonberg03] Single core +1/O “Summarizing Measurement Results: ... We consider the
slowdown of this application as the upper bound ... For
our machine, we determine an upper bound value of
1.49.”

[Pellizzoni08] Processor and I/O “...the interference between cache activity and 1/0
traffic generated by COTS peripherals can unpredictably
slow down a real-time task by 44%.”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited

;___% Software Engineering Institute Carnegie Mellon L]l].i“'el'sity April 21, 2017 distribution. 21
© 2017 Carnegie Mellon University

How bad is it?

[BuiO8] Single processor “the utilization increment [because of cache eviction]
can be as high as 13%”

[Pellizzoni10] dual core +1/0 “...measured a WCET increase 2.96 times for the task.”

[Fuchsen10] multicore About cache sharing: “If the data set is smaller than the

L2 cache visible to a core and the L2 cache is shared
(Intel Processor), the worst case performance loss
through the second core depends on the data set size
and is between 30% and 95% for write operations and
19% and 92% for read accesses.”

About cache coherency: “On the AMD processor, the
performance loss is 99% on small data sets and it moves
to 50% for large data sets.”

About data buses: “If the cores operate on a data set
which is so large that the caches have no effect, the
performance drops down to 50% if both cores are
active.”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

= — . - - . 1 . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute Carnegie Mellon University Apmz?fzow o peot i 22

© 2017 Carnegie Mellon University

How bad is it?

[Radojkovicll] Multithreaded “We also observe that, in general, the detected
processor slowdown is quite high (up to 15.3x)”

[Nowotsch12] Multicore “...the worst-case execution time (WCET) can be
multiple times slower than the same application
running on a single core...”

“A major result demonstrated by the measurements is
the substantial impact that concurrently active devices
may have on a single devices’ performance, in terms of
storage type instructions. The influence could be of a
factor from around 1.6 for L3 SRAM and 5.1 when
accessing DDR memory.”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

=% Memory Accesses been approved for public release and unlimited

== Software Engineering Institute Carnegie Mellon University April 21, 2017 distribution. 23
© 2017 Carnegie Mellon University

How bad is it?

[Mancuso13] Multicore “Experimental results show that, in the considered
benchmarks, eliminating the interference of the last
level cache can lead up to a 250% improvement in the
execution time.”

[Ward13] Multicore “proper shared cache management can enable
significant WCET reductions; on our test platform,
observed WCETs were reduced up to almost five-fold.”

[Suzukil3] Multicore “For instance, the execution time of PS.streamcluster
is increased by 60% under the no-bank-protection
approach, but the increase is only 12% under our
combined cache and bank coloring approach. ”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited

;___% Software Engineering Institute Carneg’ie Mellon Ul].i“'el'sity April 21, 2017 distribution. 24
© 2017 Carnegie Mellon University

How bad is it?

[Kim14] Multicore “Figure 5(b) illustrates the response times when all
cores share the same bank partition. With bank sharing,
we observed up to 12x of response time increase in the
target platform.”

[Yel4] Multicore “As can be seen in Figure 7 (H and H+P), the cache
sensitive workload gobmk experienced a performance
gain of as much as 13% under the interference of a
heavy background workload with page coloring.”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited

= Software Engineering Institute | Carnegie Mellon University Aol 21 2017 S 25
© 2017 Carnegie Mellon University

How bad is it?

[Nowotsch14]

%__é Software Engineering Institute

Multicore

The memory latency can increase more than 15-fold on
8-cores for a e500mc processor as witnessed by the

statement below:

“Table 1 shows the memory access latencies for read
and write operations with increasing number of

interfering cores.

TABLE 1. P4080 MEMORY ACCESS LATENCIES FOR
INCREASING NUMBER OF CONCURRENT CORES.
LATENCIES USED FOR EVALUATION ARE MARKED BOLD

Latency (cycles)
Cores 1 2 3 4
Read 41 75 171 269
Write 39 164 245 463

Coordinating Mechanisms for more Predictable
Memory Accesses

Carnegie Mellon University April 21, 2017

© 2017 Carnegie Mellon University

5 6 7 8
296 439 460 604
517 737 784 1007

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited 26
distribution.

How bad is it?

[Yun15a] Multicore “the difference of slowdown factors between the two
tasks could be as large as factor of two (2.2x against
1.2x)”

“As we increase 470.lbm’s assigned memory bandwidth,
however,, performance of 462.libquantum gradually
decreases; when the reserved bandwidth for 470.lbm is
2.0GB/s (i.e., 3.0GB/s aggregate bandwidth reservation),
more than 40% IPC reduction is observed due to
increased memory contention.”

“Note first that MemGuard-RO does not guarantee
performance isolation anymore as 462.libquantum is
17% slower than the baseline. It is because the 2.4GB/s
bandwidth can not be guaranteed by the given memory
system, causing additional queuing delay to the
462.libquantum.”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited

;___% Software Engineering Institute Carnegie Mellon L]l].i“'el'sity April 21, 2017 distribution. 27
© 2017 Carnegie Mellon University

How bad is it?

[Yun15c] Multicore “Without cache partitioning, a task can suffer up to
103X slowdown due to interference at the shared LLC.”

[Shal6] Multicore “Measurements we performed on a commercial
multicore platform (Freescale P4080) revealed that a
task’s WCET can increase by as much as 600 percent
when a task on one core runs with logically independent
tasks in other cores.”

[Kim16] Multicore “When validating real-time constraints on an m-core
platform, excessive analysis pessimism can effectively
negate the processing capacity of the additional m-1
cores so that only 'one core’s worth’ of capacity is
available.”

“Obs. 1. Providing LLC isolation reduced WCETs by up to
277% for the uB task and by up to 242% for the Matrix
program.”

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited

;___% Software Engineering Institute Carnegie Mellon L]l].i“'el'sity April 21, 2017 distribution. 28
© 2017 Carnegie Mellon University

How bad is it?

A program can experience a large slowdown because of execution
of another program on another processor. In some cases 103X

slowdown.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 29

© 2017 Carnegie Mellon University

What does DO-178C say about this slowdown?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 30

© 2017 Carnegie Mellon University

What does DO-178C say about this slowdown?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 31

© 2017 Carnegie Mellon University

Wouldn’t it make sense to have a position paper that
defines suggested objectives to achieve certification of
multi-core parts used in safety-critical applications?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 32

© 2017 Carnegie Mellon University

Wouldn’t it make sense to have a position paper that
defines suggested objectives to achieve certification of
multi-core parts used in safety-critical applications?

Yes, the position paper CAST-32B offers that.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 33

© 2017 Carnegie Mellon University

Wouldn’t it make sense that academics and industry
folks in real-time systems produce a position paper as
well?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 34

© 2017 Carnegie Mellon University

Wouldn’t it make sense that academics and industry
folks in real-time systems produce a position paper as
well?

A position paper “Minimal Multicore Avionics
Certification Guidance” offers that.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 35

© 2017 Carnegie Mellon University

So everything is solved then.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 36

© 2017 Carnegie Mellon University

So everything is solved then.

No, these documents only provide objectives.
We also need solutions.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 37

© 2017 Carnegie Mellon University

But we already have many solutions. Cache coloring,
cache locking, bank coloring, memory bus monitoring
and enforcement. Isn’t that enough?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 38

© 2017 Carnegie Mellon University

But we already have many solutions. Cache coloring,
cache locking, bank coloring, memory bus monitoring
and enforcement. Isn’t that enough?

No, some of them use the same underlying
“knob” and they want to use it in different
ways. For example, both cache coloring and
bank coloring use the virtual-to-physical
translation mechanism.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 39

© 2017 Carnegie Mellon University

But we already have many solutions. Cache coloring,
cache locking, bank coloring, memory bus monitoring
and enforcement. Isn’t that enough?

No, some of them use the same underlying

“knob” and they want to use it in different

ways. For example, both cache coloring and
bank coloring use the virtual-to-physical

translation mechanism.

Use coordinated cache and bank coloring.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 40

© 2017 Carnegie Mellon University

How does coordinated cache and bank coloring work?

Set up the virtual-to-physical translation so
that timing isolation is achieved for both cache
and bank.

% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
Memory Accesses been approved for public release and unlimited 41
April 21, 2017 distribution.

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)

Processor 1

%__% Software Engineering Institute | Carnegie Mellon University

Processor 2

Processor 3

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

Processor 4

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

42

Coordinated Cache and Bank Coloring (Simplified)

Processor 1

Processor 2

Processor 3

Shared Cache

Processor 4

%__% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

43

Coordinated Cache and Bank Coloring (Simplified)

Processor 1

Processor 2

Processor 3

Shared Cache

Processor 4

Memory banks

Memory Bank 1

Memory Bank 2

Memory Bank 3

Memory Bank 4

%__% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

44

Coordinated Cache and Bank Coloring (Simplified)

Processor 1 Processor 2 Processor 3

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA

whose bitX=1 and whose bitX=1 and whose bitX=0 and
bitY=1 bitY=0 bitY=1

Memory banks

Processor 4

Cache sets for PA
whose bitX=0 and
bitY=0

Memory Bank 1 Memory Bank 2 Memory Bank 3
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable
== . . s o 5 q Memory Accesses
—— Software Engineering Institute | Carnegie Mellon University April 2?'201 7

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited 45
distribution.

Coordinated Cache and Bank Coloring (Simplified)
C Tagk1 > Taskd >

Procgesor 1 Processor 2 Processor 3 Processor 4

Goal: M ke sure that all memory accesses from task 1 go to leftmost cache sets and to
memory bank 1.

Shared Cache

Cache :ts for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose hitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and
bi:Y=1 bitY=0 bitY=1 bitY=0

Memory banks

Memorly Bank 1 Memory Bank 2 Memory Bank 3 Memory Bank 4
i g for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 46

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
C_Togk2 >

Processor 1

Procéssor 2

Processor 3

Processor 4

Goal: Make sure that all memory accesses from task 2 go to 2"9 leftmost cache sets and to
memory bank 2.

Shared Cache

Cache sets for PA Cache se. , for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bit (=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY::0 bitY=1 bitY=0

emory banks

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 47

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
Ta)3 > Taskd >

Processor 2 ProceBsor 3 Processor 4

Processor 1

Goal: Make sure that all memory accesses from task 3 30 to 3" leftmost cache sets and to
memory bank 3.

Shared Cache

Cache sets for PA Cache sets for PA Cache set: for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bit) =0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3

for

PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 48

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
C_Togk4 >

Procdssor 4

Processor 2 Processor 3

Processor 1

Goal: Make sure that all memory accesses from task 4 go to 4t leftmost ci che sets and to
memory bank 4.

Shared Cache

Cache sets for PA
whose bitX=0 and
bitY=1

Cache se .s for PA
whose bi X=0 and
bit\ =0

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA
whose bitX=1 and

bitY=1

Memory banks

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

MemoryBank 4
fo
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 49

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)

Processor 1 Processor 2 Processor 3

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA

whose bitX=1 and whose bitX=1 and whose bitX=0 and
bitY=1 bitY=0 bitY=1

Memory banks

Processor 4

Cache sets for PA
whose bitX=0 and
bitY=0

Memory Bank 1 Memory Bank 2 Memory Bank 3
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable
== . . s o 5 q Memory Accesses
—— Software Engineering Institute | Carnegie Mellon University April 2?'201 7

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited 50
distribution.

Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

Observation: Cache Partitioning ensures that memory accesses go to the correct group of
cache sets.

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 51

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

Observation: Bank Partitioning ensures that memory accesses go to the correct group of
memory banks.

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 52

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

We need to set up the virtual-to-physical address translation so that memory accesses from
each task goes to the correct group of cache sets and to the correct memory bank.

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

Coordinated Cache and Bank Coloring (Simplified)
_Task4 >

Processor 3 Processor 4

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whose bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and

hitV-=-1 hitV—nN hitV-1 hitV=-nN

See paper N. Suzuki, H. Kim, D. DeNiz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar,
“Coordinated Bank and Cache Coloring for Temporal Protection of Memory Accesses,”
ICESS’13.

Memory Bank 1 Memory Bank 2 Memory Bank 3 Memory Bank 4
for for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

Coordinated Cache and Bank Coloring (Simplified)

Processor 3

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=0 and

hitV-1

Cache sets for PA

whose bitX=1 and
hitV=-nN

Cache sets for PA

whose bitX=1 and
hitV-1

Let us now see more coordination.

Processor 4

Cache sets for PA
whose bitX=0 and

hitv=-n

Memory Bank 1
for
PA whose bitU=1
and bitv=1

Memory Bank 2
for
PA whose bitU=1
and bitv=0

Memory Bank 3
for
PA whose bitU=0
and bitv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

% Software Engineering Institute | Carnegie Mellon University

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

Coordinated Cache and Bank Coloring (Simplified)

Processor 3

Processor 2

Processor 1

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=0 and
bitY=1

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA

whose bitX=1 and
bitY=1

Memory banks

Processor 4

Cache sets for PA
whose bitX=0 and
bitY=0

Memory Bank 1 Memory Bank 2 Memory Bank 3

for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0
and bitV=1 and bitV=0 and bitVv=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Coordinating Mechanisms for more Predictable
Memory Accesses

April 21, 2017

© 2017 Carnegie Mellon University

———i Software Engineering Institute | Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has
been approved for public release and unlimited
distribution.

56

Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 2 Processor 3 Processor 4

al address (VA)
%! to Physical Address Translation

) address (PA)
Shared Cache

Cad .e sets fcr PA Cache s. * ;5 for PA Cache sets for PA Cache sets for PA
whcse bitX=1 and whose bitaA=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

1 Memory Bank 2 Memory Bank 3 Memory Bank 4
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

Each task needs its own group of cache sets.

But two tasks on the same processor can use the same memory bank.

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 2 Processor 3 Processor 4

al address (VA)
%! to Physical Address Translation

) address (PA)
Shared Cache

Cad .e sets fcr PA Cache s. * ;5 for PA Cache sets for PA Cache sets for PA
whcse bitX=1 and whose bitaA=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

1 Memory Bank 2 Memory Bank 3 Memory Bank 4
for for for
PA whose bitU=1 PA whose bitU=1 PA whose bitU=0 PA whose bitU=0
and bitV=1 and bitV=0 and bitV=1 and bitV=0

Since coordinated cache and bank coloring depends on task-to-processor assignment, we

need to coordinate cache coloring, bank coloring, and task-to-processor assignment.

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 3 Processor 4

Prlicessor 1 Processor 2

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cau .e sets for PA Cache sets for PA Cache sets for PA Cache sets for PA
whcse bitX=1 and whose bitX=1 and whose bitX=0 and whose bitX=0 and
bitY=1 bitY=0 bitY=1 bitY=0

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

The execution time of a task depends on how many cache sets it is

allocated. (more cache sets = less self-interference)

© 2017 Carnegie Mellon University

Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 3 Processor 4

Prlicessor 1 Processor 2

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=1

Cau .e sets for PA
whcse bitX=1 and
bitY=1

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Schedulability test (needed for task-to-processor assignment) depends

on execution times.

© 2017 Carnegie Mellon University

60

Coordinated Cache and Bank Coloring (Simplified)
 Task4 >

Processor 3 Processor 4

Prlicessor 1 Processor 2

Virtual address (VA)
Virtual to Physical Address Translation

Physical address (PA)
Shared Cache

Cache sets for PA
whose bitX=1 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=0

Cache sets for PA
whose bitX=0 and
bitY=1

Cau .e sets for PA
whcse bitX=1 and
bitY=1

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

Schedulability test (needed for task-to-processor assignment) depends

on the number of cache sets that a task is allocated.

© 2017 Carnegie Mellon University

61

Coordinated Cache and Bank Coloring (Simplified)

Pr@cessor 1

Processor 2

Processor 3

Processor 4

Virtual address (VA)
Virtual to Physical Address Translation
Physical address (PA)

Shared Cache

Cache sets for PA
whose bitX=1 and
bitY=0

Cau .e sets for PA
whcse bitX=1 and
bitY=1

Cache sets for PA
whose bitX=0 and
bitY=1

Cache sets for PA
whose bitX=0 and
bitY=0

Memory banks

Memory Bank 1

for

PA whose bitU=1
and bitvV=1

Memory Bank 2
for
PA whose bitU=1
and bitV=0

Memory Bank 3
for
PA whose bitU=0
and bitV=1

Memory Bank 4
for
PA whose bitU=0
and bitV=0

We need to coordinate cache coloring, bank coloring, and task-to-processor assignment

and integrate it with execution time dependence on the number of cache sets assigned
to each task.

How to solve the problem of coordinated cache coloring,
bank coloring, and task-to-processor assignment and
integrate it with execution time dependence on the
number of cache sets assigned to each task?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 63

© 2017 Carnegie Mellon University

How do you solve the problem to coordinate cache
coloring, bank coloring, and task-to-processor
assignment and integrate it with execution time
dependence on the number of cache sets assigned to
each task.

Formulate a Mixed-Integer Linear Program.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 64

© 2017 Carnegie Mellon University

How do you solve the problem to coordinate cache
coloring, bank coloring, and task-to-processor
assignment and integrate it with execution time
dependence on the number of cache sets assigned to
each task.

Formulate a Mixed-Integer Linear Program.
And solve it. See ICESS’13 paper.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 65

© 2017 Carnegie Mellon University

Now that we can perform memory configuration and
task-to-processor assignment and schedulability testing
in one framework, why not do more?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 66

© 2017 Carnegie Mellon University

Why not do it for parallel tasks? Why not model bus
contention in the schedulability test? Why not have
more fine-grained description (the mapping of each

page)?

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 67

© 2017 Carnegie Mellon University

Why not do it for parallel tasks? Why not model bus
contention in the schedulability test? Why not have
more fine-grained description (the mapping of each

page)?

Good idea. We have done that.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 68

© 2017 Carnegie Mellon University

Why not do it for parallel tasks? Why not model bus
contention in the schedulability test? Why not have
more fine-grained description (the mapping of each

page)?

See B. Andersson, D. de Niz, H. Kim, M. Klein, R. Rajkumar,
“'Scheduling Constrained-Deadline Sporadic Parallel Tasks
Considering Memory Contention," available at
https://www.andrew.cmu.edu/user/banderss/manuscripts/gedf
_memory_milp/gedf _memory_milp.pdf

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
== - - = . . . Memory Accesses been approved for public release and unlimited
—— Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 69

© 2017 Carnegie Mellon University

Conclusions
Different mechanisms for achieving isolation are not necessarily
compatible out-of-the-box.

There is a need to coordinate different mechanisms for achieving
Isolation.

Frameworks for constraint satisfaction (e.g., MILP) are useful for
these coordinated decisions.

Future work / Open guestions
Need for a larger framework (compiler/compiler decisions on code
placement) to incorporate TLB coloring.

How to incorporate Cache locking and Intel Cache Allocation
Technology?

Dealing with cost of coordinated approaches (e.g., waste memory)

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

= — . . . Y f . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute ‘ Carnegie Mellon University Apmz?'zow ikl o s 70

© 2017 Carnegie Mellon University

Thanks!

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
. - Memory Accesses been approved for public release and unlimited
Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 71

© 2017 Carnegie Mellon University

References

[Kirk89] D. Kirk, “SMART (Strategic Memory Allocation for Real-Time) Cache Design,” RTSS, 1989.

Main idea: The hardware is designed so that a cache is composed of M partitions and one shared pool. There is also a hardware unit called mapping
function which translates each memory access (based on memory address and user id and other info) to a decision on whether the memory access
should operate on the shared pool or one of the partitions (and if so, which partition). A task can be assigned more than one partition. The decision on
how to allocate partitions to tasks is performed with the idea of maximizing the marginal reduction in the utilization of the taskset.

[Wolfe94] A. Wolfe, “Software-Based Cache Partitioning for Real-Time Applications,” International Workshop on Responsive Computer Systems, 1997.
Main idea: Use the virtual-to-physical address translation to make sure that for different processes, the physical addresses generated map to different
cache sets (and hence avoid cache eviction).

[Mueller95] F. Mueller, “Compiler Support for Software-Based Cache Partitioning,” ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Real-Time Systems, 1995.
Main idea: Use the idea in [Wolfe94] but let the compiler do the cache coloring.

[Liedtke97] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-controlled cache predictability for real-time systems,” RTAS, 1997.
Main idea: Similar to [Wolfe94] but with OS perspective.

[Bellosa97] F. Bellosa, “Process Cruise Control: Throttling Memory Access in a Soft Real-Time Environment,” Technical Report, University of Erlangen-
Niirnberg, 1997.
Main idea: If a given process performs more accesses to the memory bus than it is allowed, then the process is slowed down (by having the TLB
miss handler executing NOP instructions).

[Schonberg03] S. Schonberg, “Impact of PCl-bus load on applications in a PC architecture,” RTSS, 2003.
Main idea: Compute the slowdown (from DMA accesses causing memory bus accesses which contend with the program’s accesses on the memory
bus) of the execution of a program

[Edwards07] S. Edwards and E. Lee, “The Case for Precision Timed (PRET) Machine,” DAC, 2007.
Main idea: Hw and sw abstractions need to change to be time predictable; e.g., cache should be replaced with scratchpad.

[Rosén07] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus Access Optimization for Predictable Implementation of Real-Time Applications on
Multiprocessor Systems-On-Chip,” RTSS07.
Main idea: Create a TDMA bus schedule according to the needs of a program (both message passing and cache misses).

[Pellizzoni07] R. Pellizzoni and M. Caccamo, “Toward the Predictable Integration of Real-Time COTS based Systems,” RTSS’07.
Main idea: Find a bound on the number of cache misses of a program and a bound on the number of front-side bus accesses from I/O device and
compute additional execution time of program. Round-robin bus. Also, perform policing of 1/0 device.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
=% Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 72

© 2017 Carnegie Mellon University

References

[Steffens08] L. Steffens, M. Agarwal, and P. Wolf, “Real-Time Analysis for Memory Access in Media Processing SoCs: A Practical Approach,”
ECRTS, 2008.
Main idea: Analyze cumulative delays of cache misses (low latency streams) using network calculus and also consider message passing.
Configure enforcement. Simulation-based approach to obtain cumulative delays of cache misses.

[Schliecker08] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, R. Ernst, “Reliable Performance Analysis of a Multicore Multithreaded
System-on-Chip,” CODES+ISSS, 2008.
Main idea: Compute cumulative delay of memory accesses considering contention on the memory bus. Assume work-conserving memory bus
but except from that, make no assumption on arbitration.

[Pellizzoni08] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of CPU and I/O Transactions in COTS-based Embedded
Systems,” RTSS, 2008.
Main idea: Extension of [Pellizzoni07]. Intel Core2. Implementing the policer.

[Bui08] B. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact of Cache Partitioning on Multi-Tasking Real-Time Embedded Systems,” RTCSA,
2008.
Main idea: Use genetic programming to decide how many cache colors a task should have.

[Bourgade 08] R. Bourgade, C. Ballabriga, H. Casse, C. Rochange, and P. Sainrat, “Accurate analysis of memory latencies for WCET
estimation,” RTNS, 2008.
Main idea: DRAM memories are organized as banks with one row buffer for each bank. If a memory access has a memory address such that
for the bank that holds that data, its row contains the data to be accessed, then the memory latency is small; otherwise it is large. This paper
considers this effectin WCET analysis.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
% . - Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 73

= © 2017 Carnegie Mellon University

References

[Andersson09] B. Andersson, A. Easwaran, and J. Lee, “Finding an Upper Bound on the Increase in Execution Time Due to Contention on the
Memory Bus in COTS-Based Multicore Systems,” RTSS-WIP, 2009.
Main idea: Model the memory bus of COTS multicore as work-conserving (cache misses). Obtain model from traces.

[Paolieri09] M. Paolieri, E. Quiones, F. Cazorla, G. Bernat, and M. Valero, “Hardware Support for WCET Analysis of Hard Real-Time Multicore
Systems,” ISCA, 2009.

Main idea: Create hardware that makes timing predictable. Use TDMA bus and h/w cache partitioning. Implement a WCET computation mode
(which ensures that that time a memory operation takes is equal to its maximum).

[Kinnan09] L. Kinnan, “Use of multicore processors in avionics systems and its potential impact on implementation and certification,” DASC,
2009.

Main idea: General discussion on the topic. Mentions the importance of service history. Mentions that cache coherency protocols can operate
much faster in multicores than in multiprocessors on separate chips. Mentions that contention/eviction on a shared L2 cache is particularly
severe if two tasks on different processor cores run the same software synchronized (this might be an issue if a multicore is used to achieve
fault-tolerance). Also points out that certification requires transparency of hardware but chip makers typically do not want to disclose details.
Points out that processor cores within a multicore share clock signals and power signals and hence are less fault tolerant than multiprocessors
implemented with multiple chips.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
=% . - = . . . Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution.

© 2017 Carnegie Mellon University

74

References

[Pellizzoni10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele, “Worst Case Delay Analysis of Memory Interference in
Multicore Systems,” DATE, 2010.

Main idea: Compute upper bounds on extra execution of a task due to bus contention. Assume TDMA scheduling of tasks. Assume different
types of bus arbitration (RR,FCS, priority).

[Schranzhofer10] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo, “Worst-Case Response Time Analysis of Resource
Access Models in Multi-Core Systems,” DAC, 2010.

Main idea: Extend [Pellizzoni10] with new models for accessing shared hardware resources; one of them is “dedicated phases” which only
allows implicit-communication in the beginning and end of a superblock. Use TDMA bus.

[Pellizzoni10] R. Pellizzoni and M. Caccamo, “Impact of Peripheral-Processor Interference on WCET Analysis of Real-Time Embedded
Systems,” IEEE Transactions on Computers, 2010.
Main idea: Extend [Pellizzoni07] to a journal article.

[Chattopadhyay10] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling Shared Cache and Bus in Multi-cores for Timing Analysis,”
SCOPES, 2010.

Main idea: Analyze shared cache and memory bus jointly. Assume TDMA bus and use abstract interpretation in cache analysis. Consider an
application comprises multiple tasks with potentially precedence constraints between these tasks. Non-preemptive partitioned scheduling.

[Fuchsen10] R. Fuchsen and R. Winterheim, “How to address certification for multi-core based IMA platforms: current status and potential
solutions,” DASC, 2010.
Main idea: Measure slowdown of execution because of sharing resources in the memory system.

[Lv10] M. Lv, W.Yi, N. Guan, and G. Yu, “Combining Abstract Interpretation with Model Checking for Timing Analysis of Multicore Software,”
RTSS, 2010.
Main idea: Describe a program with a control flow graph (CFG) and use abstract interpretation to classify memory accesses in each basic
block and then formulate a timed automaton for each task with each basic block being a sequence of locations and then analysis bus
contention delay with a Timed-Automata model checker (Uppaal).

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

e - - - . . . Memory Accesses been approved for public release and unlimited
=== Software Engineering Institute | Carnegie Mellon University Aol 21, 2017 G oveatere 75

= © 2017 Carnegie Mellon University

References

[Dasari11] D. Dasari, B. Andersson, V. Nelis, S. M. Petters, A. Easwaran, and Jinkyu Lee, "Response Time Analysis of COTS-Based Multicores
Considering the Contention on the Shared Memory Bus," TrustCom, 2011.
Main idea: Compute worst-case response times of tasks making no assumption on the arbitration policy for the memory bus except assuming
that the memory bus is work-conserving.

[Rosén11] J. Rosén, C. F. Neikter, P. Eles, Z. Peng, P. Burgio, and L. Benini, “Bus Access Design for Combined Worst and Average Case
Execution Time Optimization of Predictable Real-Time Applications on Multiprocessor Systems-On-Chip,” RTAS 11.
Main idea: Similar to [Rosén07].

[Yoon11] M.-K. Yoon, J.-E. Kim, L. Sha, “Optimizing Tunable WCET with Shared Resource Allocation and Arbitration in Hard Real-Time
Multicore Systems,” RTSS, 2011.
Main idea: Use special hardware that provides predictable WCET. Consider a TDMA memory bus so that the total utilization of the taskset
is minimized (e.g., a task with small period and/or many memory accesses should receive more slots in the TDMA schedule).

[Chattopadhyay11] S. Chattopadhyay and A. Roychoudhury “Scalable and Precis Refinement of Cache Timing Analysis via Model Checking,”
RTSS 2011.
Main idea: Extend WCET and CRPD analysis to use model checking for better precision.

[Radojkovic11] P. Radojkovic, S. Girbal, A. Grasset, E. Quinones, S. Yehia, and F. J. Cazorla, “On the evaluation of the Impact of Shared
Resources in Multithreaded COTS Processors in Time-Critical Environments,” ACM Transactions on Architecture and Code Optimization, 2011.
Main idea: Create stressing-benchmarks that stress different types of shared resources (e.g. instruction fetch stage in pipeline, later stages

in pipeline, L1 cache, L2 cache, memory bandwidth) and find experimentally how much the execution of a pair of stressing-benchmarks is
slowed down when executing in parallel. Also, experimentally find slowdown when an application executes in parallel with one of the stressing
benchmarks.

[Herter11] J. Herter, P. Backes, F. Haupenthal, and J. Reineke, “CAMA: A Predictable Cache-Aware Memory Allocator,” ECRTS, 2011.
Main idea: Memory allocator where a task specifies not only the size of requested memory block but also the cache color it the requested
memory block. This
provides more information to WCET analysis. The allocator is implemented by having one list of free memory blocks per cache color.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

e - - - . . . Memory Accesses been approved for public release and unlimited
=== Software Engineering Institute | Carnegie Mellon University Aol 21, 2017 G oveatere 76

= © 2017 Carnegie Mellon University

References

[Nowotsch12] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing architectures in avionics,” EDCC, 2012.
Main idea: Provide a test approach that models the worst-case behavior for the case of concurrent network and memory usage by multiple
applications.

[Mancuso13] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni, “Real-Time Cache Management Framework for
Multicore Architectures,” RTAS, 2013.
Main idea: Use profiling of memory accesses of programs and use it to guide cache allocation. Also, combine page coloring with cache
locking (use page coloring to map frequently accessed pages to certain cache sets and then lock cache blocks of those cache sets).

[Ward13] B. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making Shared Caches More Predictable on Multicore Platforms,” ECRTS,
2013.
Main idea: Use cache coloring and treat cache sets as a shared resource; that is, a task must clock cache sets before starting to execute; then
it can release.

[Wu13] Z. Wu, Y. Krish, and R. Pellizzoni, “Worst-Case Analysis of DRAM Latency in Multi-Requestor Systems,” RTSS, 2013.
Main idea: Model the time it takes for a memory operation to be performed considering DRAM timing parameters. Then use this to compute
upper bounds on cumulative delay that a program can experience.

[Suzuki13] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, and R. Rajkumar, “Coordinated Bank and Cache Coloring for
Temporal Protection of Memory Accesses,” ICESS, 2013.
Main idea: Setup the virtual-to-physical translation so that different tasks access different cache sets and different memory banks. This
provides cache and memory bank isolation.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
% . - Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 77

= © 2017 Carnegie Mellon University

References

[Kim14] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, “Bounding Memory Interference Delay in COTS-based Multi-Core
Systems,” RTAS, 2014.
Main idea: Model the time it takes for a memory operation to be performed considering DRAM timing parameters. Then use this to compute
upper bounds on response times. Assume that a task z; performs at most H; memory accesses.This work differs from [Wu13] in that
(i) schedulability analysis is performed (not just compute cumulative latency) and (ii) memory bank sharing is allowed.

[Lampka14] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, N. Stoimenov, “A formal approach to the WCRT analysis of multicore systems

with memory contention under phase-structured task sets,” Real-Time Systems, 2014.
Main idea: Use PREM (that is a program is divided into three parts, fetch data, compute, and write-back result) and partitioned non-preemptive
scheduling. Consider the software as consisting of superblocks; a superblock has upper and lower bound on execution time and memory
accesses. For each processor core, find a function that is an upper bound on the number of memory accesses in a time interval of duration t.
For a processor core under analysis (denoted p), describe the upper bound of the number of memory accesses from other processor cores
and let us timed automaton represent the events that memory accesses are generated; this timed automaton must respect the upper bound
as mentioned. Then model the bus arbitrator as a timed automaton. And model a superblock as a timed automaton as well. Then state the
query that for all possible execution, the response time is at most certain bound. Do binary search on this upper bound. This gives us upper
bound on the response time. The paper shows that almost tight bounds can be computed.

[Ye14] Y. Ye, R. West, Z Cheng, and Y. Li, “COLORIS: A Dynamic Cache Partitioning System Using Page Color,” PACT, 2014.
Main idea: Use cache partitioning implemented in software (using the virtual-to-physical translation mechanism) and change the partitioning at
run-time (in order to support more tasks and so support changes in the memory footprint).

[Nowotsch14] J. Nowotsch, M. Paulitsch, D. Biihler, H. Theiling, S. Wegener, and M. Schmidt, “Multi-core Interference-Sensitive WCET Analysis
Leveraging Runtime Resource Capacity Enforcement,” ECRTS, 2014.
Main idea: Use static scheduling (TDMA) to schedule tasks. Assume a round-robin bus. Compute the execution times of tasks.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

e - - - . . . Memory Accesses been approved for public release and unlimited
=== Software Engineering Institute | Carnegie Mellon University Aol 21, 2017 G oveatere 78

= © 2017 Carnegie Mellon University

References

[Yun15a] Heechul Yun,, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha, "Memory Bandwidth Management for Efficient
Performance Isolation in Multi-core Platforms," IEEE Transactions on Computers, 2015.
Main idea: Perform policing on the memory bus. The available bandwidth is time-varying because some memory operations are fast (e.g., row
hit) and others are slow (e.g., row miss). For soft real-time: reclaim unused memory bandwidth; for hard real-time: disable the reclamation. The
sum of bandwidth should be kept below a certain threshold (e.g., 1.2GBps); this is typically much smaller than peak bandwidth (6.4GBps in the
system considered in the article).

[Graciolo15] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frolich, and R. Pellizzoni, “A Survey on Cache Management Mechanisms for Real-
Time Embedded Systems,” ACM Computing Surveys, 2015.

[Yun15b] H. Yun, R. Pellizzoni, and P. K. Valsan, “Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems,”
ECRTS, 2015.
Main idea: Modify [Kim14] so that the model the analysis is based on allows read-prioritization and multiple outstanding memory requests.

[Yun15c] H. Yun and P. K. Valsan, “Evaluating the Isolation Effect of Cache Partitioning on COTS Multicore Processors,” OSPERT, 2015.
Main idea: Evaluate the impact of co-runners on execution times. Do this evaluation on three platforms: ARM7, ARM15, and Intel Nehalem.
Find that in some cases the execution time can increase 103 times. Even with cache partitioning, the execution time can increase 14times; this
is because of the Miss Status Holding Register (MSHR).

[Panchamukhi15] S.A. Panchamukhi and F. Mueller, “Providing Task Isolation via TLB Coloring,” RTAS, 2015.
Main idea: Use the compiler/linker to allocate code and data of each task so that when the tasks run, TLB entries of one task does not evict
TLB entries of another task.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has

e - - - . . . Memory Accesses been approved for public release and unlimited
=== Software Engineering Institute | Carnegie Mellon University Aol 21, 2017 G oveatere 79

= © 2017 Carnegie Mellon University

References

[Li16] Y. Li, B. Akesson, K. Lampka, and K. Goossens, “Modeling and Verification of Dynamic Command Scheduling for Real-Time Memory
Controllers,” RTAS, 2016.
Main idea: Model many of the details of the memory controller (timing specifications by JEDEC) as a timed automaton. Then describe a
network of timed automata and compute the worst-case response time of a task.

[Sha16] L. Sha, M. Caccamo, R. Mancuso, J.-E. Kim, M.-K. Yoon, R. Pellizzoni, H. Yun, R. B. Kegley, D. Periman, G. Arundale, and R. Bradford,
“Real-Time Computing on Multicore Processors,” Computer, 2016.
Main idea: A framework single-core equivalence (SCE) involving (i) cache locking, (ii) bank coloring, and (iii) memory guard (policing the
memory accesses). The memory guard makes the execution time of one task independent of the memory bus contention of other task but it
comes at the cost of low memory bandwidth (1Gbps). SCE uses an I/O partition. SCE assumes that the h/w supports cache locking and
performance monitoring counters. With SCE, the execution time of a task can increase by approximately 50% (see Figure 5) for 8 cores.

[Kim16] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J.H. Anderson, and F.D. Smith, “Attacking the One-Out-Of-m Multicore Problem by
Combining Hardware Management with Mixed-Criticality Provisioning,” RTAS, 2016.
Main idea: Use isolation mechanisms for high-criticality tasks and let low-criticality tasks share resources.

[Kim16] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J.H. Anderson, and F.D. Smith, “Attacking the One-Out-Of-m Multicore Problem by
Combining Hardware Management with Mixed-Criticality Provisioning,” RTAS, 2016.
Main idea: Use isolation mechanisms for high-criticality tasks and let low-criticality tasks share resources.

[CAST32A] Certification Authorities Software Team (CAST), Position Paper, CAST-32A, Multi-core Processors, COMPLETED November 2016
(Rev 0), Available at https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

[Sha16b] L. Sha, M. Caccamo, G. Shelton, M. Nuessen, J. P. Smith, D. Miller, R. Bradford, R. Kegley, D. Periman, J. Preston, J. W. Wlad, M.
Storr, D. DeNiz, S. Chaki, M. Klein, B. Andersson, I. Bate, A. Burns, S. Palin, S. Bak, D. Kingston, M. Clark, T. Kim, and E. Pak, “Position Paper
on Minimal Multicore Avionics Certification Guidance,” August 4, 2016.

Coordinating Mechanisms for more Predictable [DISTRIBUTION STATEMENT A] This material has
=% . - Memory Accesses been approved for public release and unlimited
== Software Engineering Institute | Carnegie Mellon University April 21, 2017 distribution. 80

© 2017 Carnegie Mellon University

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/

