The One-Out-of-m Multicore Problem Jim Anderson, Kenan Professor University of North Carolina at Chapel Hill Work supported by NSF and AFOSR #### **Outline** - Problems caused by multicore. - » "The one-out-of-m problem." - » Why this is an important problem. - Basic solution strategy. - » MC² (mixed-criticality on multicore). - » Hardware management in MC². - Brief overview of recent work. - » Key focus: features of real-world task systems that break hardware isolation. #### The One-Out-Of-m Multicore Problem » In many safety-critical domains, we would like to be able to exploit the computational capacity of multicore. *However:* mage source: http://www.as.northropgrumman.com/products/nucasx47b/assets/lgm_UCAS_3_0911.jpg - When using an m-core platform in a safety-critical domain, analysis pessimism can be so great, the capacity of the "additional" m 1 cores is entirely negated. - » We call this the "one-out-of-m" problem. - In avionics, this problem has led to the common practice of simply disabling all but one core if highly critical system components exist. #### Roots of the problem: - Shared hardware that is not predictably managed. - See the FAA position paper "CAST 32" for an extensive discussion of problems caused by multicore. - Excessive pessimism in provisioning tasks. - Mixed-criticality analysis seeks to address this. able to exploit the computational capacity multicore. *However:* age source: http://www.as.northropgrumman.com/products/nucasx47b/assets/lgm_UCAS_3_0911.jp - When using an m-core platform in a safety-critical domain, analysis pessimism can be so great, the capacity of the "additional" m 1 cores is entirely negated. - » We call this the "one-out-of-m" problem. - In avionics, this problem has led to the common practice of simply disabling all but one core if highly critical system components exist. # What is Mixed-Criticality Analysis? (Vestal [RTSS '07]) - Each task is assigned a criticality level. - Each task has provisioned execution time (PET) specified at <u>each</u> criticality level. - » PETs at higher levels are (typically) larger. - Example: Assuming criticality levels A (highest), B, C, etc., task τ_i might have PETs C_i^A = 20, C_i^B = 12, C_i^C = 5, ... - Rationale: Will use more pessimistic analysis at high levels, more optimistic at low levels. # What is Mixed-Criticality Analysis? (Vestal [RTSS '07]) - Each task is assigned a criticality level. - Each task has provisioned execution time (PET) specified at <u>each</u> criticality level. - » PETs at higher levels are (typically) larger. - The task system is correct at Level X iff all Level-X tasks meet their timing requirements assuming all tasks have Level-X PETs. # What is Mixed-Criticality Analysis? (Vestal [RTSS '07]) - Some "weirdness" here: Not just one system - anymore, but <u>several</u>: the Level-A system, Level-B,... - » PETs at higher level voically) larger. - The task system is correct at Level X iff all Level-X tasks meet their timing requirements assuming all tasks have Level-X PETs. #### **Outline** - Problems caused by multicore. - » "The one-out-of-m problem." - » Why this is an important problem. - Basic solution strategy. - » MC² (mixed-criticality on multicore). - » Hardware management in MC². - Brief overview of recent work. - » Key focus: features of real-world task systems that break hardware isolation. # **Our Solution Strategy** - W.r.t. lessening capacity loss generally (even on uniprocessors), two orthogonal approaches have been investigated previously: - » Hardware-management techniques that reduce hardware interference. - » Mixed-criticality analysis techniques that enable less critical tasks to be provisioned less pessimistically. Hardware-Management Techniques Mixed-Criticality Analysis # **Our Solution Strategy** - Our work focuses broadly on research questions that arise when applying <u>both</u> approaches together. - » We are addressing such questions in the context of a resource-allocation and analysis framework developed by us called MC² (mixed criticality on multicore). # MC²: Starting Assumptions - Modest core count (e.g., 2-8). - » Quad-core in avionics would be a tremendous innovation. # MC²: Starting Assumptions - Modest core count (e.g., 2-8). - Modest number of criticality levels (e.g., 2-5). - » 2 may be too constraining - » ∞ isn't practically interesting. - » These levels may not necessarily match DO-178B/C. # MC²: Starting Assumptions - Modest core count (e.g., 2-8). - Modest number of criticality levels (e.g., 2-5). Main motivation: To develop a framework that allows interesting design tradeoffs to be investigated that is reasonably plausible from an avionics point of view. A Non-Goal: Developing a framework that could really be used in avionics today. Jim Anderson 17 Jim Anderson 18 #### Our Actual Allocation Scheme #### Our Actual Allocation Scheme ## **Experimental Evaluations** - We have assessed the value of hardware management w.r.t. - » individual tasks through experiments involving benchmark programs, - » entire task systems from a schedulability point of view. As a Function of Allocated LLC Area This is One Out of About 500 Graphs Uniprocessor EDF (the current de facto standard) ## d-Aware Schedulability Study s is One Out of About 500 Graphs This is One Out of About 500 Graphs #### **Outline** - Problems caused by multicore. - » "The one-out-of-m problem." - » Why this is an important problem. - Basic solution strategy. - » MC² (mixed-criticality on multicore). - » Hardware management in MC². - Brief overview of recent work. - » Key focus: features of real-world task systems that break hardware isolation. #### Recent Work #### **Dealing with Shared Pages** - Real-world task systems share memory pages. - In recent work, we've dealt with these sources of sharing: - » "Explicit" read/write sharing due to producer/consumer relationships [RTSS'16]. - » "Implicit" read-only sharing due to shared libraries [RTAS'17]. - » Sharing due to interrupt-driven I/O [under construction]. - We've also investigated: - » Applications that must support mode changes [under construction]. # MC² Papers (Available at http://www.cs.unc.edu/~anderson/papers.html) - J. Anderson, S. Baruah, and B. Brandenburg, "Multicore Operating-System Support for Mixed Criticality," Proc. of the Workshop on Mixed Criticality: Roadmap to Evolving UAV Certification, 2009. - » A "precursor" paper that discusses some of the design decisions underlying MC². - M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Scoredos, "Mixed Criticality Real-Time Scheduling for Multicore Systems," *Proc. of the 7th IEEE International Conf. on Embedded Software and Systems*, 2010. - » Focus is on **schedulability**, i.e., how to check timing constraints at each level and "shift" slack. - J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson, "RTOS Support for Multicore Mixed-Criticality Systems," *Proc. of the 18th RTAS*, 2012. - » Focus is on RTOS design, i.e., how to reduce the impact of RTOS-related overheads on high-criticality tasks due to low-criticality tasks. - B. Ward, J. Herman, C. Kenna, and J. Anderson, "Making Shared Caches More Predictable on Multicore Platforms," *Proc. of the 25th ECRTS*, 2013. - » Adds **shared cache management** to a two-level variant of MC². The approach in today's talk is different. - J. Erickson, N. Kim, and J. Anderson, "Recovering from Overload in Multicore Mixed-Criticality Systems," *Proc. of the 29th IPDPS*, 2015. - » Adds virtual-time-based scheduling to Level C. ## MC² Papers (Available at http://www.cs.unc.edu/~anderson/papers.html) - M. Chisholm, B. Ward, N. Kim, and J. Anderson, "Cache Sharing and Isolation Tradeoffs in Multicore Mixed-Criticality Systems," *Proc. of the 36th RTSS*, 2015. - » Presents linear-programming-based techniques for optimizing LLC area allocations. - N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D. Smith, "Attacking the One-Out-Of-m Multicore Problem by Combining Hardware Management with Mixed-Criticality Provisioning," *Proc. of the 22nd RTAS*, 2016. - » Adds shared hardware management to MC². - M. Chisholm, N. Kim, B. Ward, N. Otterness, J. Anderson, and F.D. Smith, "Reconciling the Tension Between Hardware Isolation and Data Sharing in Mixed-Criticality, Multicore Systems," Proc. of the 37th RTSS, 2016. - » Adds support for data sharing to MC². - N. Kim, M. Chisholm, N. Otterness, J. Anderson, and F.D. Smith, "Allowing Share Libraries while Supporting Hardware Isolation in Multicore Real-Time Systems," Proc. of the 23rd RTAS, 2017 (to appear). - » Adds selective sharing of libraries to MC². #### Thanks! Questions? CMAAS, Apr. 2017