Cache Partitioning on Contemporary
COTS Multicore Processors

4/21/2017
Heechul Yun
Assistant Professor, University of Kansas

THE UNIVERSITY OF
KANSAS

High-Performance Multicores
for Intelligent Safety Critical Systems
e Why?

— Intelligence [more performance

— Space, weight, power (SWaP), cost

Time Predictability Challenge

Task 1 Task 2 Task 3

¥ ¥

Task 4

Core4

Shared Cache

Memory Controller (MC)

DRAM

 Shared hardware resource contention can cause

significant interference delays

* Shared cache is a major shared resource

— KU

THE UNIVERSITY OF
KANSAS

Cache Partitioning

- oo
* Page coloring
LLC

— Control cache-sets (OS)

Way partitioning DRAM
— Control cache ways (HW)

Goal: Eliminate unwanted cache-line evictions

« Common assumption

— Cache partitioning I performance isolation
* If working-set fits in the cache partition

* Not necessarily true on “modern” caches
— KU

THE UNIVERSITY OF
KANSAS

This Talk

* |solation Performance of Cache Partitioning
— Page coloring (4 ARM, 1 Intel)
— Way partitioning (Intel CAT)

* Sources of Inter-core Cache Interferences
— Miss Status Holding Registers (MSHRS)
— Complex organization and mapping

e Recommendations
— Multicore architecture for avionics/automotive

THE UNIVERSITY OF

Non-blocking Cache

stall only when
result is needed

T i T Tl

cpu cpu cpu

| Miss penalty | | Miss penalty |

| Miss penalty

Blocking cache Non-blocking cache

* Can serve cache hits under multiple cache misses

— Essential for an out-of-order core and any multicore

— KU

KANSAS (*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81

Miss Status Holding Registers

e Hardware structure MSHR 1| Valid

Block Addr.

Issue

Target Info.

— keeps track of MSHR 2| Valid

Block Addr.

Issue

Target Info.

outstanding misses

MSHR n| Valid

Block Addr.

Issue

Target Info.

* Operation
— On a miss, allocate a MSHR entry to track the req.

— On receiving the data, clear the MSHR entry

e #of MSHRs
— Memory-level parallelism (MLP) of the cache

THE UNIVERSITY OF

Blocking of a Non-blocking Cache

 What happens if all MSHRs are occupied?
— CPU’s access to the cache is blocked
— Until the pending misses are completed

 Blocked shared LLC

— Can delay ALL cores, incl. cache-hit requests

— A pending cache miss could take 100’s of CPU
cycles to complete (access to DRAM is slow)

— We will see the impact of this in later experiments

— KU

THE UNIVERSITY OF

COTS Multicore Platforms

ARM ARM ARM ARM Intel
Cortex-A7 Cortex-A9 Cortex-A15° Cortex-A157 Nehalem

Core 4core @ 4core @ 4core @ 4core @ 4core @
1.4GHz 1.7GHz 2.0GHz 2.0GHz 2.8GHz
In-order Out-of-order Out-of-order Out-of-order Out-of-order

LLC (shared)/ 512KB 1MB 2MB 2MB S8MB

Prefetcher Off Off On Off Off

Platform Odroid-Xu4 Odroid-U3 Odroid-Xu4 Tegra TK1 Dell T3500

e COTS multicore platforms
— Odroid-XU4: 4x Cortex-A7 and 4x Cortex-A15
— Tegra TK1: 4x Cortex-Al15
— Odroid-U3: 4x Cortex-A9
— Dell desktop: Intel Xeon quad-core (Nehalem)

KANSAS

Measuring Memory-Level Parallelism

o d= Ld b o—

oo =1 o

9
10
[
12
13
14
[5
16
17
I8
19
20
21

— KU

THE UNIVERSITY OF

static 1

static int next|[MAXMLP]:
long run(long 1ter , int mlp)
{
long cnt = 0;
for (long 1 = 0: 1 < iter: 1++) {
switch (mlp) {
case MAX MLP:
case 2:
next|l] = list]|1l]||next|[]]];
/% fall —through =*/
case |I:
next[0] = list]|O]] next]|O]];
}
cnt += mlp:
1
return cnt;
}

list [MAX MLP];

nt=

* Measuring # of MSHRs

 The benchmark (*)

- Concurrent list
traversal

- #of lists = MLP

D. Eklov et al., “Bandwidth bandit: quantitative characterization of memory contention.” PACT’12

10

Cortex A7 (in-order)

5000 : : ; i

. 1l inst. —+—
a_‘g’. 4000 2 inst. —e— -
S 3 inst. —¢—
= 3000 4 inst. —&— -
S
's 2000
e
o 1000
m

0

1 2 3 4 5 6 7 8 9 10
MLP/instance
e A single thread can generate one request at a time
— Local MLP =1

* 4 threads generate 4 requests at a time
— Global MLP =4

— KU

KANSAS

Cortex-A15" (out-of-order)

5000
"
= 4000
=
< 3000 /
S 2000 £/
= 7 2 inst. —e—
c 1000 § 3inst, —¢— -
@) 4 inst. —a—

0]] | |

1 2 3 4 5 6 7 8 9 10
MLP/instance

* Asingle thread can generate up to 10 concurrent requests
— Local MLP =6

* 4 threads generateupto 11
— Global MLP =11 (*)

— KU

KANSAS (*) ARM. Cortex-A15 Technical Reference Manual, Rev: r2p0, 2011

Intel Nehalem (out-of-order)

QI v gmreremgreeeeemgoesemse preessssgerssseegesssees e oo eesge sesee o semme g e genm e s eenga e cresens
P
F

8000 ~ linstance —— 3instances —x¢— |
e . . saradrsaeraand
2 instances —&— 4 instances —&—

~ 7000 [e T = B e i —

= EOOD - e E) E E.........;........E. e .i. 'i: T d!_ .._.i_...__1:_

< 5000 - ; i A _ e _ _

o SO S TV 10t SNV NOUTN OV YOO NOOUE MOV FUTIOS- NP SOV SO

R 774 N 1 1 A T A T

2 3000

[ge} i

0 2000 fffprsmin s e s e
1000 R T

R N N O A O O
1 2 3 45 6 7 8 9 1011 12 13 14 15 16
MLP/instance

* Asingle thread can generate up to 10 concurrent requests
— Local MLP =10

* 4 threads generate up to 16 (4 x 4) concurrent requests
— Global MLP =16 (*)

KANSAS

(*) However, this is due to #of DRAM banks, not the LLC. Nehalem’s LLC support up to 32 13

ldentified Memory Level Parallelism

Local MLP
Global MLP 4 4 11 16
* Local MLP
— MLP of a core-private cache
* Global MLP

— MLP of the shared cache (and DRAM)

THE UNIVERSITY OF
KANSAS
14

Cache Interference Experiments

subject co-runner(s)

LLC

DRAM

 Measure the performance of the ‘subject’
— (1) alone, (2) with co-runners
— Last-Level Cache (LLC) is evenly partitioned using PALLOC (*)

* Q: Does cache partitioning provide isolation?
—— KU

M (*) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Memory Allocat

or for Performance Isolation on Multicore Platforms.” RTAS’14 15

IsolBench: Synthetic Workloads

Experiment Subject Co-runner(s)
Exp. 1 Latency(LLC) BwRead(DRAM)
Exp. 2 | BwRead(LLC) BwRead(DRAM)
Exp. 3 | BwRead(LLC) BwRead(LLC)
Exp. 4 Latency(LLC) | BwWrite(DRAM)
Exp. 5 |BwRead(LLC) | BwWrite(DRAM)
Exp. 6 | BwRead(LLC) | BwWrite(LLC)
N _/
Working-set size: (LLC) < % LLC [cache-hits, (DRAM) > 2X LLC [cache misses
* Latency
— A linked-list traversal, data dependency, one outstanding miss
* Bandwidth

— An array reads or writes, no data dependency, multiple misses

e Subject benchmarks: LLC (Last-Level Cache) partition fitting
—— KU

KANSAS
16

Latency(LLC) vs. BwRead(DRAM)

)
= 14

=12 . solo X3

810 +1 co-run. E3

5 "1 +2 co-run. Il

o 8 - +3 co-run. E3 ‘
>

6

-

N 4

.

S

=

* No interference on Cortex-A7 and Nehalem

* On Cortex-A15’, Latency(LLC) suffers 6.4X slowdown
— despite partitioned LLC

— KU

THE UNIVERSITY OF

BwRead(LLC) vs. BwRead(DRAM)

c 14 : :

F 12 . solo & ‘ ‘
S +1 co-run. EA _ _
= 10 1 12 co-run. mm

O 8 .| +3co-run. = e
T °

©

N4

g 2

O

> 0

e Up to 10.6X slowdown on Cortex-A15° (8X in Nehalem)

* Cache partitioning != performance isolation

— On all tested out-of-order cores (A9, A15, Nehalem)
— KU

KANSAS
18

BwRead(LLC) vs. BwWrite(DRAM)
¥ ¥

c 14

= 15.6 1.3 7.6

F 12 . solo &Xa

S +1 co-run. BX

= 10 1 42 co-run. m

o 8 ~] *+3co-run. X1

& 6

©

N4 ‘ '

'©

e 2 [

S 0 o RERT % =i M-
G G
sz‘@* o,f@* Co e, 'CT::.,?@Jr ’V@/) e

ke 9 VUso sy

e Up to 21X slowdown on Cortex-A15° (8X in Nehalem)

* Writes generally cause more slowdowns

— Due to write-backs
—— KU

THE UNIVERSITY OF

EEMBC, SD-VBS Workload

Benchmark | L1-MPKI | L2-MPKI | Description
EEMBC Automotive, Consumer [1]
aifftr01 3.64 0.00 FFT (automotive)
anfftO1 3.99 0.00 [nverse FFT (automotive)
cacheb01 2.14 0.00 Cache buster (automotive)
rgbhpglil 1.59 0.00 Image filter (consumer)
rebyig01 3.81 0.01 Image filter (consumer)
SD-VBS: San Diego Vision Benchmark Suite [35]. (input: sqcif)
disparity 56.92 (.13 Disparity map
mser 16.12 (.57 Maximally stable regions
svm T.81 0.01 Support vector machines

e Subject
— Subset of EEMBC, SD-VBS
— High L2 hit, Low L2 miss
* Co-runners
— BwWrite(DRAM): High L2 miss, write-intensive
— KU

THE UNIVERSITY OF

EEMBC and SD-VBS

solo X1 +2 co-runners EE solo B4 +2 co-runners
v +1 co-runner Bm +3 co-runners =] g +1 co-runner = +3 co-runners =
E 4, S — —
€ 35—t E 3.5 —
E 2.5 — {.!. j H I i i H L".__] —_ .;. .;
= _]..5 J—E. -]_. 3 — :. et
Nl] x; b b Nl b4 g
=05 — [ER|- = 0.5 - R
P] b b b ! o b bl b
E 0 Pl [I 4 . X E 0 b .
o f?ff,? @fmp Scr 98 Jrj:- Vs, Nsq Su o sz, VUi
= o, O 2% at:'fg,f e~ h = By T

) @fiﬁ'@j JG{? Q.QJ 7, -G'{r

Cortex-A7 (in-order) Cortex-A15° (out-of-order)

X-axis: EEMBC, SD-VBS (cache partition fitting)
— Co-runners: BwWrite(DRAM)

* Cache partitioning != performance isolation
— KU

KANSAS
21

MSHR Contention

_ Cortex-A7 Cortex-A9 Cortex-A1597 m

Local MLP
Global MLP 4 4 11 16

* Shortage of cache MSHRs [lock up the cache

e LLC MSHRs are shared resources
— 4cores x L1 cache MSHRs > LLC MSHRs

e Good news

— Recent Intel processors seem immune to this problem
— But ...

— KU

KANSAS
22

Intel Cache Allocation Technology (CAT)

* CAT: Intel’s cache management hardware support

— Support way-based partitioning
— Support flexible app-partition binding mechanism

e How effective is it in terms of isolation?

* We performed preliminary evaluation of CAT
using an Intel Xeon E5-2658 v3 processor

— Finding: even after partitioning, there seems to be
significant non-determinism.

— KU

THE UNIVERSITY OF

— KU

THE UNIVERSITY OF

Run-to-Run Miss Rate Variation

WSS = 25% of a partition WSS = 90% of a partition
c c
i) o
® . No |
MAX: 0% MAX: >40%
] []
[a] a
g Z
= i
2 2
o (=]
& o S
, """" Sy
M .
0 10 20 30 40 50 0 10 20 30 40 50
Miss-Rate Miss-Rate

Experiment

* Measure the LLC miss-rate of a cache partition fitting benchmark
Result

* Non zero cache miss, high run-to-run variation (2 — 43%)

24

Intel CAT: Challenges

* Complex cache organization and addressing
— Use of multiple cache slices
— Use of undisclosed hash function for mapping
[Difficult to remove conflict misses (page coloring)

e Effect of cache replacement algorithm
— Partition migration requires flushing (*)
— Set dueling? (**)

e Difficult to analyze and control the worst-case
— Not ideal for real-time systemes.

KANGRS () Meng et al., “vCAT: Dynamic Cache Management using CAT Virtualization.” RTAS17
(**) http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/;

http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/

Summary

e Cache partitioning may not be as predictable
and deterministic as we believed (wanted)

* We still can overserve inter/intra-core
interference even after partitioning

— MSHR contention
— Conflict misses

THE UNIVERSITY OF

Recommendations on Real-Time
Friendly Multicore Architectures

* More visibility to software

— Per-core/app monitoring of shared resources
 DRAM access count/row hit-miss/latency,

 LLC access/miss/occupancy/latency
* Examples: Intel CMT (LLC occupancy), MBM (dram b/w)

— Mapping functions

* Cache slice/set mapping, DRAM row/bank/rank
mapping
* Examples: AMD memory controller

KANSAS

Recommendations on Real-Time
Friendly Multicore Architectures

* More control by software

— Control shared hardware resources
* Examples: [Valsan16] (Cache MSHRs), Intel CAT (cache
space)
— Tag additional information
* On instructions and memory
* Examples: ARM TrustZone (secure memory)

e Criticality, determinism, reliability (rowhammer) [new
hardware/software interface is needed!

THE UNIVERSITY OF

Thank You

This presentation is based on the following publications:

THE UNIVERSITY OF
KANSAS

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Addressing Isolation Challenges of Non-
blocking Caches for Multicore Real-Time Systems.” Real-Time Systems (In minor revision)

Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. “Taming Non-blocking Caches to Improve
Isolation in Multicore Real-Time Systems.” IEEE Intl. Conference on Real-Time and Embedded
Technology and Applications Symposium (RTAS), IEEE, 2016. Best Paper Award.

Heechul Yun, Prathap Kumar Valsan. Evaluating the Isolation Effect of Cache Partitioning on COTS
Multicore Platforms. Workshop on Operating Systems Platforms for Embedded Real-Time
applications (OSPERT), 2015

IsolBench
https://github.com/CSL-KU/IsolBench

29

https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/IsolBench

Summary

Evaluated the effect of cache partitioning
— On modern COTS multicore architectures
— Based on page coloring
— Based on Intel CAT (way partitioning)

Findings
— Cache partitioning does not ensure cache (hit) performance isolation
— MSHR contention and other issues

IsolBench

— Developed synthetic benchmarks, test scripts, kernel patches to
evaluate multicore processors

— https://github.com/CSL-KU/IsolBench

THE UNIVERSITY OF

https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/IsolBench
https://github.com/CSL-KU/IsolBench

Discussion

* Why is MSHR contention important?

— Timing attack

* Malicious code can significantly inflate the execution times of critical
tasks on different cache partitions

— Memory intensive applications are increasing.
* E.g., vision, artificial intelligence, machine learning.

 What are the other sources of contention to worry?

THE UNIVERSITY OF

— Cache, system bus bandwidth

— DRAM bandwidth (*), banks mapping/allocation (**), controller
scheduling algorithms (***)

(*) Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Memory Bandwidth Reservation S
ystem for Efficient Performance Isolation in Multi-core Platforms. IEEE RTAS, |IEEE, 2013

(**) Heechul Yun, Renato Mancuso, Zheng-Pei Wu, Rodolfo Pellizzoni. “PALLOC: DRAM Bank-Aware Memory Allocator for
Perfaormance Isolation an Multicore Platforms.” IEEE RTAS, 2014

(***) Prathap Kumar Valsan, Heechul Yun. MEDUSA: A Predictable and High-Performance DRAM Controller for Multicore b
ased Embedded Systems IEEE CPSNA, 2015

