AutoV: An Automotive Testbed for Real-Time Virtualization

Meng Xu Insup Lee

PRECISE Center
University of Pennsylvania

Trend: Multicore & Virtualization

- Automotive systems are becoming more and more complex
 Requires high performance and strong isolation
- Virtualization on multicore help handle such complexity
 - Increase performance and reduce cost

Real-time virtualization

- Challenge: Interference affects the timing isolation
- Shared components are the source of interferences
- Real-time virtualization aims to achieve timing isolation
 - e.g., Real-Time Xen (RT-Xen)

Real-time virtualization

- Challenge: Interference affects the timing isolation
- Shared components are the source of interferences
- Real-time virtualization aims to achieve timing isolation

How to evaluate?

- Real-time community has real-time virtualization, but has no access to
 - Real automotive platforms
 - Real automotive applications

AutoV: An automotive testbed for real-time virtualization

- AutoV
 - Evaluate the timing isolation provided by the real-time virtualization for automotive
- Autonomous racing car
 - Provide automotive applications as the evaluation workloads
- RT-Xen: Real-time Xen
 - Provide state-of-art timing isolation mechanisms for virtualization

Content

- Introduction
- Autonomous racing car
- RT-Xen
- AutoV
- Evaluation

Autonomous racing car

- F1/10 racing car developed by PRECISE Racing
 - Fast mode: Drive straight with PD controller
 - Brake mode: Anti-lock braking
 - Turn mode: Detect the corner and apply a constant steering angle

F1/10 racing car from PRECISE Racing

1st F1/10 Autonomous Racing Competition
October 2016, Pittsburgh.

Fastest Lap

PRECISE Racing (University of Pennsylvania)

812 ft

63.8 sec

8.7mph
Average speed

~16mph Top speed

Architecture of the racing car

Content

- Introduction
- Autonomous racing car
- RT-Xen
- AutoV
- Evaluation

Real-time capabilities of RT-Xen

- Real-time CPU scheduling [EMOSFT' 14]
 - Global / Partitioned, EDF / RM
 - Global EDF: RTDS scheduler since Xen 4.5
- Dynamic shared cache management [RTAS' 17]
 - Strong isolation in last level cache (LLC)
 - Dynamically reconfigure LLC when demand changes
 - Based on Intel Cache Allocation Technology hardware

Real-time capabilities of RT-Xen

- Real-time CPU scheduling [EMOSFT' 14]
 - Global / Partitioned, EDF / RM
 - Global EDF: RTDS scheduler since Xen 4.5
- Dynamic shared cache management [RTAS' 17]
 - Strong isolation in last level cache (LLC)
 - Dynamically reconfigure LLC when demand changes
 - Based on Intel Cache Allocation Technology hardware

Xen scheduler

- Xen scheduler
 - VM runs on VCPUs
 - Xen schedules VCPUs on PCPUs
- Credit scheduler: Round-robin with proportional share
 - No real-time guarantee for VCPUs

RT-Xen scheduler

- A set of real-time schedulers
 - Earliest Deadline First (EDF) and Rate Monotonic (RM) algorithm
 - Global and partitioned scheduling
- Global EDF has been incorporated in Xen as the RTDS scheduler since 2015
 - RTDS: Real-Time Deferrable Server
- RTDS scheduler is re-written for Xen 4.7

 - Less implementation overhead

RTDS scheduler

- A VCPU is specified as (period, budget)
 - The VCPU will get budget time at the beginning of every period
 - The VCPU's budget decreases when a task runs on it

- The scheduler schedules VCPUs based on priority
 - The VCPU with earlier deadline has higher priority
 - Ready queue holds all VCPUs with budget
 - Depleted queue holds VCPUs that run out of budget in the period

Sorted by next release time

Content

- Introduction
- Autonomous racing car
- RT-Xen
- AutoV
- Evaluation

Architecture of the racing car on RT-Xen

Content

- Introduction
- Autonomous racing car
- RT-Xen
- AutoV
- Evaluation

Evaluation goal

 Can safety-critical automotive applications run in virtualization environment?

 Can the interference jeopardize the safety of automotive applications?

 Can RT-Xen eliminate the interference and guarantee the safety?

Evaluation setup

- Straight hallway
- Expected car behavior
 - Drive straight for 5 seconds and brake
- Two types of workload
 - Racing car application
 - Interference tasks
- Interference task
 - CPU-intensive tasks
 - Future work: Consider other types of interferences (e.g., cache and memory)
- Two scenarios
 - Solo: When only the racing car application runs
 - Interference: When both the racing car application and the interference tasks run

Virtualization

Xen scheduler: Credit or RTDS

Linux

Interference scenario Solo scenario Linux Xen: Credit scheduler RT-Xen: **RTDS** scheduler

Interference scenario

Linux

Interference scenario

Linux

Xen:

Credit

scheduler

RTDS

RT-Xen:

scheduler

RTDS

Interference scenario

Linux

Xen: Credit scheduler

RT-Xen: RTDS scheduler

Evaluation goal

- Can safety-critical automotive applications run in virtualization environment?
 - Yes
- Can the interference jeopardize the safety of automotive applications?
 - Yes
- Can RT-Xen eliminate the interference and guarantee the safety?
 - Yes

Conclusion

- AutoV: An Automotive Testbed for Real-Time Virtualization
- Evaluation demonstrates
 - Automotive systems' integration requires the timing isolation
 - Real-time virtualization is a promising technique to achieve the timing isolation

Challenges

- How much evaluation should be done to claim that the real-time virtualization can be used for automotive systems?
- How to manage the other resources, e.g., I/O, network?

Future work

- Evaluate other mechanisms of RT-Xen, e.g.,
 dynamic cache management
- Make it available to others so that our community can develop more complex applications

Acknowledgement

- Autonomous racing car collaborators
 - University of Pennsylvania: Radoslav Ivanov, Nguyen Hung, Bipeen Acharya, Kyoungwon Kim, Sarvesh Patkar, James Weimer
- RT-Xen collaborators
 - University of Pennsylvania: Linh Thi Xuan Phan, Oleg Sokolsky
 - Washington University in St. Louis: Sisu Xi, Chenyang Lu, Chris Gill
- AutoV collaborators
 - University of Pennsylvania: Karthik Methuku, Nitesh Singh

Check out AutoV

https://sites.google.com/site/autovtestbed/

Thank You

